
LARGE SCALE DATA MINING WITH APPLICATIONS IN SOCIAL COMPUTING

by

Shagun Jhaver

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Latifur Khan, Chair

Dr. Farokh B. Bastani

Dr. Bhavani Thuraisingham

Copyright c© 2014

Shagun Jhaver

All rights reserved

This material is based upon work supported by

National Science Foundation under Award No. CNS 1229652,

and the Air Force Office of Scientific Research under Award No.

FA-9550-09-1-0468 and Award No. FA-9550-12-1-0077.

We thank Dr. Robert Herklotz for his support.

LARGE SCALE DATA MINING WITH APPLICATIONS IN SOCIAL COMPUTING

by

SHAGUN JHAVER, B. Tech

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1583636

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 1583636

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Professor Latifur Khan

for his continuous support of my research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. One simply could not wish for a better or kinder supervisor.

Besides my advisor, I would like to thank the rest of my thesis committee: Professor Farokh

B. Bastani and Professor Bhavani Thuraisingham, for their encouragement and insightful

comments.

I am grateful to Professor Haim Schweitzer and Professor Balaji Raghavachari for their

moral support through some difficult times. I would also like to thank Professor Yang Liu

and Professor Vibhav Gogate for helping me develop my background in natural language

processing and probabilistic graphical models. I thank my fellow labmates in the Data

Mining Group: Swarup Chandra, Khaled Alnaami, Ahsanul Haque and Rakib Solaimani

for the stimulating discussions, for the sleepless nights we were working together before

deadlines, and for all the fun we have had in the last years.

Last but not the least, I would like to thank my family: my beloved parents, Balkrishna and

Uma Jhaver, for their unconditional love and care and continuous spiritual guidance.

November 2014

v

LARGE SCALE DATA MINING WITH APPLICATIONS IN SOCIAL COMPUTING

Publication No.

Shagun Jhaver, MS
The University of Texas at Dallas, 2014

Supervising Professor: Dr. Latifur Khan

The aim of this thesis is to analyze large scale data mining and its applications in the domain

of social computing. This study sought to investigate the following case studies:

Firstly, a description of a new framework for stream classification is presented. This frame-

work predicts class labels for a set of instances in a data stream and uses various machine

learning techniques to perform this classification. The framework is evaluated using both

real-world and synthetic datasets, including a dataset used to perform a website fingerprint-

ing attack by viewing it as a setwise classification problem.

Secondly, an investigation of the parallelization of calculating edit distance for a large set

of string pairs using the MapReduce framework is presented. This study demonstrates how

large scale data mining opens new avenues of designing for dynamic programming algorithms.

Thirdly, a comparative analysis of classifiers predicting politeness in a framework proposed

by Danescu-Niculescu-Mizil et al is detailed. An application of this framework to study

politeness in various web-logs is also presented.

vi

Finally, a discussion of different approaches to sentiment analysis of Twitter posts is pre-

sented. An application of this processing to predict the rating of newly released movies is

also developed.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xii

CHAPTER 1 INTRODUCTION . 1

1.1 Setwise Stream Classification . 1

1.2 Edit Distance calculation . 2

1.3 Politness Classifiers . 2

1.4 Sentiment Analysis of Twitter Messages . 2

CHAPTER 2 A FRAMEWORK FOR ENSEMBLE BASED SETWISE
STREAM CLASSIFICATION . 4

2.1 Introduction . 4

2.2 Related Work . 8

2.3 Setwise Stream Classification . 9

2.3.1 Stream . 9

2.3.2 Vector Representation . 10

2.3.3 Ensemble Model . 13

2.4 Evaluation . 17

2.4.1 Datasets . 17

2.4.2 Experiments and Results . 21

2.5 Discussion . 27

2.6 Conclusion . 28

CHAPTER 3 CALCULATING EDIT DISTANCE FOR LARGE SETS OF
STRING PAIRS USING MAPREDUCE . 31

3.1 Introduction . 31

3.2 Background . 34

viii

3.3 Related Work . 37

3.4 Proposed Approach . 39

3.5 Experimental Setup and Results . 44

3.6 Conclusions and Future Work . 51

CHAPTER 4 COMPARATIVE ANALYSIS OF CLASSIFIERS PREDICTING
POLITENESS AND APPLICATION IN WEB-LOGS 53

4.1 Introduction . 53

4.2 Background . 54

4.3 Experiments . 58

4.4 Experimental Results . 62

4.4.1 In-domain Experiments . 63

4.4.2 Cross-domain Experiments . 63

4.4.3 Experiments on web logs . 66

4.5 Related Work . 74

4.6 Conclusions and Future Work . 76

CHAPTER 5 COMPARATIVE ANALYSIS OF DIFFERENT APPROACHES TO
SENTIMENT ANALYSIS OF TWEETS . 78

5.1 Motivation . 78

5.2 Introduction . 79

5.3 Filtering Tweets . 79

5.4 Classifying Tweets . 80

5.4.1 Classifying using list of positive and negative words 80

5.4.2 Using Distant Supervision (Sentiment140 api) 80

5.4.3 Using customized Mahout Classifier 81

5.5 Calculating Average rating . 82

5.6 Conclusion . 82

5.7 Looking Ahead . 83

REFERENCES . 84

VITA

ix

LIST OF FIGURES

2.1 An example constructing an entity fingerprint using its d-dimensional data in-
stances which are shaded. Here, the fingerprints of entity E are 4-dimensional
vectors constructed using 4 anchor points from corresponding blocks. The finger-
prints are represented as points in the k-dimensional spacesKi andKi+1 respectively. 12

2.2 Ensemble update procedure on reading Blocki+r at which Blocki attains sufficient
statistics. Here, v = 3 models are generated per block. Mv

b represents a model
constructed with anchor points constructed using a random set of training data
instances inBlockb. Models in the ensemble are represented with dark shades, and
the models which hasn’t attained sufficient statistics are lightly shaded. Models
having no shade are removed or forgotten. 15

2.3 Accuracy vs k on datasets using SMO classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First
7 blocks; Baseline accuracy. 21

2.4 Accuracy vs k on datasets using J48 classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First
7 blocks; Baseline accuracy. 21

2.5 Accuracy vs k on datasets using NaiveBayes classifier, with number of blocks
used to generate models : 1st block; First 3 blocks; First 5 blocks;

First 7 blocks; Baseline accuracy. 22

2.6 Accuracy vs k on datasets using 5NN classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First
7 blocks; Baseline accuracy. 22

2.7 Accuracy of datasets using EnsembleCP with 2 models per block; 5
models per block; 10 models per block; and Baseline accuracy. 22

2.8 Accuracy of datasets using EnsembleCP with 2 models per block; 5
models per block; 10 models per block; and Baseline accuracy. 26

2.9 Accuracy with concept evolution. EnsembleCP; and Baseline. 26

3.1 EDIT-DISTANCE(s[1, 2, ..m], t[1, 2, ..., n], h): (MEM ED). 35

3.2 Edit Distance between two strings. 36

3.3 Single Machine Implementation for calculating Edit Distance for all string pairs
(SIN ED). 37

x

3.4 Simple MapReduce approach to calculating Edit Distance for all string pairs
(SIM MR). 41

3.5 Prefixed MapReduce approach to calculating Edit Distance for all string pairs
(PRE MR). 42

3.6 PRE MR algorithm flow-chart. 43

3.7 SIN ED vs. SIM MR vs. PRE MR implementation. 45

3.8 PRE MR performance for different prefix length values. 47

3.9 PRE MR performance for different number of reducers, prefix length=1. 48

3.10 PRE MR performance for different number of reducers, prefix length=2. 49

3.11 PRE MR performance for different number of reducers, prefix length=3. 50

3.12 PRE MR performance for different number of mappers. 51

xi

LIST OF TABLES

3.1 SIN ED vs. SIM MR vs. PRE MR implementation. 45

3.2 PRE MR performance for different prefix length values. 46

3.3 PRE MR performance for different number of reducers, prefix length=1. 47

3.4 PRE MR performance for different number of reducers, prefix length=2. 48

3.5 PRE MR performance for different number of reducers, prefix length=3. 49

3.6 PRE MR performance for different number of mappers, prefix length=1, num-
ber of reducers=4. 50

4.1 Politeness Strategies used by Danescu-Niculescu-Mizil et al (Danescu-Niculescu-
Mizil et al., 2013) for features in Linguistically Informed Classifiers. 59

4.2 Blogs used in testing. 63

4.3 In-domain analysis on Wikipedia requests using Bag of Words classifiers. 64

4.4 In-domain analysis on Wikipedia requests using Linguistic classifiers. 65

4.5 In-domain analysis on Stack Exchange requests using Bag of Words classifiers. 66

4.6 In-domain analysis on Stack Exchange requests using Linguistic classifiers. . . . 67

4.7 Cross-domain analysis with Wikipedia requests for training and Stack Exchange
requests for testing and using Bag of Words classifiers. 68

4.8 Cross-domain analysis with Wikipedia requests for training and Stack Exchange
requests for testing and using Linguistic classifiers. 69

4.9 Cross-domain analysis with Stack Exchange requests for training and Wikipedia
requests for testing and using Bag of Words classifiers. 70

4.10 Cross-domain analysis with Stack Exchange requests for training and Wikipedia
requests for testing and using Linguistic classifiers. 71

4.11 Classification results using Wikipedia requests for training for
blog 1 - blog 5. 72

4.12 Classification results using Stack Exchange requests for training for
blog 1 - blog 5. 73

4.13 Classification results using Wikipedia requests for training for blog 6 - blog 10. . 74

4.14 Classification results using Stack Exchange requests for training for
blog 6 - blog 10. 75

xii

CHAPTER 1

INTRODUCTION

This chapter introduces the case studies investigated through the course of research for this

thesis. A brief description of the problems analyzed in each case study, the implementations

chosen, and the results observed is presented.

1.1 Setwise Stream Classification

Traditional stream data classification involves predicting a class label for each data instance

in a data stream. However, such inference of class labels may not be practical if a label is

associated with a set of data instances rather than a single instance. Characteristics of a

class can be represented by a data distribution in the feature space over which stochastic

models can be developed to perform classification for sets of data instances. Further, data

mining on streaming data exhibits multiple challenges such as concept drift and concept

evolution. In this study, we develop a generic framework to perform setwise stream classi-

fication where class labels are predicted for a set of instances rather than individual ones.

In particular, we design a fixed-size ensemble based classification approach using various

machine learning techniques to perform classification. We use both real-world and synthetic

datasets, including a dataset used to perform a website fingerprinting attack by viewing it

as a setwise classification problem, to evaluate the framework. Our evaluation shows an

improved performance, for all datasets, over an existing method. A detailed description of

this study is presented in Chapter 2.

1

2

1.2 Edit Distance calculation

Given two strings X and Y over a finite alphabet, the edit distance between X and Y ,

d(X, Y) is the number of elementary edit operations required to edit X into Y . A dynamic

programming algorithm elegantly computes this distance. In this study, we investigate the

parallelization of calculating edit distance for a large set of strings using MapReduce, a

popular parallel computing framework. We propose SIM MR and PRE MR algorithms,

parallel versions of the dynamic programming solution, and present implementations of these

algorithms. We study different cases by varying algorithm parameters, input size and number

of parallel nodes, and analytically and experimentally confirm the superiority of our methods

over the usual dynamic programming approach. This study demonstrates how MapReduce

parallelization opens new avenues of designing for dynamic programming algorithms. This

study is detailed in Chapter 3.

1.3 Politness Classifiers

This study presents an implementation of a computational framework for identifying and

characterizing politeness markings in text documents proposed in the Paper ‘A computa-

tional approach to politeness with application to social factors’ (Danescu-Niculescu-Mizil

et al., 2013) by Danescu-Niculescu-Mizil et al. A comparative analysis of the classifiers for

this task constructed using a variety of different algorithms, filters and features is presented.

The framework has also been used to study the politeness levels in a variety of web-logs.

The details of this study are presented in Chapter 4.

1.4 Sentiment Analysis of Twitter Messages

This study describes the implementations of a variety of techniques to process data from the

social network website Twitter, and generate useful information from it. It is assumed that

3

the vast and free use of social networks like Twitter generates data that is unskewed and

unbiased, and is ripe for predictive analytics.

We show an application of twitter data processing. Three different approaches have been

taken to mine the tweets for the year 2012 to predict the rating (on a scale of 0 - 10) and

box office performance of movies released in 2012. First, the tweets that are related to the

movies released in 2012 are filtered. The first approach to mining these tweets uses a list

of positive words and a list of negative words to classify each tweet. The second approach

uses the sentiment140 api for the classification. The third approach creates a classification

model using a training-and-testing data with naive Bayes method, and then uses this model

to classify each tweet, thereby rating it. After the rating for each tweet has been generated,

an average over the ratings of each movie is calculated to predict the overall rating for each

movie. Finally, the rating for each movie is shown alongside a standard (IMDB) rating for

comparative analysis. A detailed description of this study is presented in Chapter 5.

CHAPTER 2

A FRAMEWORK FOR ENSEMBLE BASED SETWISE

STREAM CLASSIFICATION 1

This chapter develops a framework to perform setwise stream classification where class labels

are predicted for a set of instances rather than individual instances in a stream. We also

design a fixed-size ensemble based classification approach using various machine learning

techniques to perform classification. We evaluate this framework using both real-world and

synthetic datasets.

2.1 Introduction

In recent years, ubiquitous availability of streaming data from sources such as web, social

networks and sensor networks has spurred a wide interest in discovering meaningful patterns

in such data, among research communities as well as technology businesses. An imminent

need to make this data usable has lead to design of new algorithms for stream analysis, and

their use in applications such as anomaly detection (Lee and Stolfo, 1998), market analysis,

etc. In particular, data classification involves an assignment of a class label to each data

instance in a dataset. A stochastic model or classifier is developed and is used to predict a

class label for each data instance in the dataset (Domingos and Hulten, 2000). However, in

certain cases, assignment of a class label to an individual data instance may not be valid. A

class label may instead be associated with certain patterns of data distribution that reflect

characteristics of the class. In such cases, a class label may only be associated with a set

of data instances rather than individual instances. This set of data instances is called an

1Authors: Shagun Jhaver, Swarup Chandra, Khaled Al-Naami, Latifur Khan and Charu Aggarwal

4

5

entity. Classification of an entity can be performed by inferring the distributional pattern

of its corresponding data instances in the feature space. This classification problem is called

Setwise Classification as the label prediction is performed for sets of data instances. In this

chapter, we focus on the problem of Setwise Stream Classification where the data instances

occur continuously in a data stream.

A setwise classification problem can be realized in many real-world situations. For in-

stance, a Website Fingerprinting attack can be considered as a setwise stream classification

problem. In Website Fingerprinting (Liberatore and Levine, 2006; Dyer et al., 2012; Juarez

et al., 2014), the task of an attacker is to identify the webpage accessed by a user, using

only the encrypted network trace captured by a man-in-the-middle, and without using the

source and destination IP (as this may not always be the address hosting the webpage). A

successful attack is a breach of user privacy and security. Therefore, it is important to study

different attack schemes and provide countermeasures to ensure the safety of users accessing

the web. Here, a network trace contains a set of packets (Burst) with encrypted payload.

Each burst can be viewed as a data instance having features such as byte length and time.

A set of packets exchanged (uplink and downlink) between the user and server for loading

a complete webpage from a trace forms an entity. Each entity is associated with a webpage

name forming a class label. Here, a single packet may not be associated with a class label

since similar packets can occur over multiple webpages. Instead, we associate a class label

to a trace.

Similarly, consider the problem of predicting demographic, or location information of

Twitter users’, using the content of their tweets. Such a prediction technique can be used for

targeted advertising, and in recommendation systems. Here, the data stream consists of user

tweets where each tweet can be considered as an individual data instance. The features of

each data instance may consist of user details, type of tweet, words used, hash tags used, etc.

Here, the userID associated with each tweet can be considered as an entity, representing the

6

user. Each user has an associated demographic or location that forms a class label. Feature

distribution for each user based on his/her tweets can be used to determine the class label.

Designing a stochastic model to represent a non-static data generation process presents

unique challenges. In addition, the assumptions of setwise stream add to these challenges so

that the traditional stream classifiers cannot be employed. Data instances associated with

each entity can occur at different times along the stream. Further, each class has multiple

entities associated with it.

A robust classification method should be able to model characteristic behaviors of the

entities. Therefore, the challenges in designing a setwise stream classifier are as follows:

1. Insufficient Statistics: As data instances belonging to various entities are interleaved,

their distribution characteristics need to attain sufficient statistics to be used for clas-

sification.

2. Concept Drift (Klinkenberg, 2003): Data distribution may change over time with newer

streaming data.

3. Concept Evolution (Masud et al., 2010): New class labels may appear later in the

stream.

4. Storage Limitation: It is impossible to store and use all historical data for mining in

memory when the data stream is assumed to be unbounded.

In this chapter, we propose a new approach to perform setwise stream classification by

designing an ensemble of models to address the above mentioned challenges. In particular,

the characteristics of an entity can be represented by the spatial distribution of data instances

in its d-dimensional feature space, denoted by D. This distribution is called the entity’s

fingerprint. We utilize the k-means clustering method to obtain k clusters of data instances.

For each entity, the fingerprint is defined as the distribution of its data instances within

7

these k clusters. We now view an entity as a k-dimensional vector, where each element

denotes the fraction of data instances associated with the corresponding cluster. This view

of the setwise classification problem projects an entity-fingerprint into a data point in the

k-dimensional space, denoted by K. Class label is now predicted for these data points in the

K space. An ensemble of models is generated along the data stream to capture concept drift

and concept evolution of entities in the K spaces. In addition, only the statistical summary

of data instances is stored to address the challenge of unbounded stream.

The contributions of the chapter are as follows:

1. We present a new framework to perform setwise stream classification. We view the

distribution of a set of data instances belonging to an entity in its d-dimensional feature

space, as a projection onto a k-dimensional space where the entity is represented as

a data point. The prediction of class labels is then performed in this k-dimensional

space using a suitable classifier.

2. Our approach overcomes challenges such as concept drift, concept evolution, and stor-

age limitations, with respect to the entities in the k-dimensional space, using an en-

semble of models.

3. We evaluate our proposed approach with real-world and synthetic datasets, using vari-

ous stochastic classification algorithms, and compare their accuracies for each dataset.

The chapter is organized as follows. We first summarize related studies in Section 2.2.

We then describe our proposed approach in Section 2.3 and provide a detailed algorithm.

Evaluation of this approach is provided in Section 2.4 including the dataset description and

results. Discussion of various observations and future work is provided in Section 2.5. Finally,

we conclude our chapter in Section 2.6.

8

2.2 Related Work

In this section, we survey related studies on stream data classification, including a recent

work on setwise stream classification.

A data stream is an ordered set of data instances obtained continuously and periodically

from a data generation process. Classification of this streaming data is typically performed

on individual instances, where a class label is estimated, as they arrive. This is done by

either using a single model (Glymour et al., 1997) or an ensemble of models (Wang et al.,

2003), which is trained using a set of training data instances in a supervised manner. Some

approaches use incremental learning methods (Syed et al., 1999) where the classifier first

estimates a class label for a test data instance, and then is retrained before further classifica-

tion is performed (Gaber et al., 2005). However, in case of setwise classification, classifying

each instance, directly from the stream, is not possible. These existing methods are therefore

not suitable for classification of entities.

A recent study (Aggarwal, 2014) introduces an approach to perform setwise stream clas-

sification by designing a clustering methodology (Aggarwal, 2012) to extract distribution

characteristics of data instances in its feature space. Using data instances belonging to a

set of training entities, this approach performs k-means clustering on an initial set of data

instances, from multiple training entities, to obtain k cluster-centroids (or anchor points).

Each data instance (both training and test), occurring later in the data stream, is then

associated with a cluster having the centroid closest to it. Distribution of data instances

among these clusters represents an entity, which is used to further represent a class distribu-

tion. Class labels of test entities are predicted by checking the class label of the closest (or

nearest) training distribution. Further, using an initial set of anchor points throughout the

classification process, an attempt is made to capture drifting concepts by considering it as

a different distribution. However, this may not capture such drifts effectively. In addition,

if all class labels are not known a priori, the initial set of anchor points will not be able to

9

capture new classes appearing at a later stage in the stream since class profiles for these

labels would not be created.

In our approach, we provide a generic framework to perform setwise stream classification.

Our method not only performs classification using the nearest neighbor algorithm, but also

using other stochastic algorithms such as decision trees, SVMs etc. In addition, we also

address the challenges of concept drift and concept evolution by constructing an ensemble

of models having anchor points constructed at regular intervals while processing the data

stream, to represent the changing data distribution. We selectively include anchor points to

build models along the stream and capture the distributional changes or new distributions

in incoming data.

2.3 Setwise Stream Classification

In this section, we present our approach to perform setwise classification, and describe how

we use the ideas of ensemble methods in machine learning to classify test entities in a data

stream.

2.3.1 Stream

While performing setwise stream classification, we assume a finite set of entities in the stream.

An unbounded number of data instances may however exist. The input data stream consists

of data instances with dimensionality d, each associated with an entity Ei where 1 ≤ i ≤ N ,

and N is the total number of entities. An entity is associated with a class label l ∈ {1 . . . L}.

It is also assumed that L � N so that there exists multiple entities belonging to the same

class. The dataset consists of training and test entities where the classification problem is to

determine class labels for test entities using a model trained with the training entities. Data

instances are assumed to continually arrive in a streaming fashion, and the data instances of

test and training entities are interleaved in the stream. We process a set of data instances,

10

occurring sequentially in the stream at a time. This set of data instances is called a Block.

Each block can have data instances belonging to training and test entities.

A data instance consists of d feature values along with an entity identifier, and a class

label. This is denoted as < Yr, Er, labelr > where r represents a data instance received at

time tr. Yr is a d-dimensional tuple with each dimension representing a feature of a data

instance. Er is an entity identifier denoting the entity to which the data instance Yr belongs.

The class label denoted as labelr represents the class of the entity. labelr ∈ {1 . . . L} in case

of a training entity, else labelr = −1 for a test entity.

2.3.2 Vector Representation

Data streams often deliver elements very rapidly, and the processing needs to be done in real

time, or we lose the opportunity to process at all, without accessing the archival storage.

Therefore, it is crucial that the stream mining algorithm we use executes in main memory,

without access to secondary storage or with only rare accesses to secondary storage. A

number of data-based and task-based techniques have been proposed to meet the challenges

of data stream mining (Dietterich, 2000). Data-based techniques entail summarizing the

whole data-set or choosing a subset of the incoming stream to be analyzed. The setwise

classification task cannot assign a class label to each instance in the data stream. Since

the class label is associated with a set of data instances belonging to an entity, we require

an entity to be represented as a data point in the K space. Such a representation would

facilitate the use of various well-known classification algorithms in estimating class labels for

the entity.

A simple statistic, such as sum or average, that combines the d-dimensional feature values

of each data instance belonging to an entity would lose the spatial distribution information

in its feature space. We therefore use a histogram-like data structure that summarizes the

incoming data streams. In order to construct such a data structure, we perform k-means

11

clustering, using an initial set of random data instances belonging to various training entities

in each block considered, to estimate a set of k centroids, called anchor points. These anchor

points are used for constructing k clusters consisting of data instances from the stream.

Each new data instance in subsequent blocks is assigned to the closest cluster according to

its Euclidean distance in the D space. The anchor points, once built, remain fixed throughout

the rest of the streaming process. A histogram-like data structure is constructed for each

entity, known as its fingerprint, which is defined as follows:

A set of r data instances belonging to an entity E are partitioned into k clusters (denoted
as C1 . . . Ck, where k << r) whose centroids or anchor points are given as a1 . . . ak. Each
data instance is assigned to a cluster with the centroid closest to it. The fingerprint of E
is a k-dimensional tuple [f1, f2,..., fk]. Each fi, with i ∈ {1 . . . k} is equal to the cluster
frequency fi of cluster Ci. Here,

∑k
i=1 fi = 1.

Fingerprints are thus defined with respect to a set of k anchor points. Since the streaming

data is received continuously, data instances of different entities may appear randomly. Now,

a fingerprint of an entity E can be seen as a data point in K space. This provides a set of

training and testing data points in K space, each corresponding to the training and testing

entity fingerprints. The classification problem now translates to predicting the class labels

of the test data points, using the training data points to train a classifier.

The vector representation is illustrated in Figure 2.1 as an example. Streaming data

instances are grouped into 2 blocks. Blocki is first considered for which 4 anchor points (a1i

to a4i) are generated. Fingerprint for an entity E is computed by counting the number of

associated data instances for each cluster in Blocki. The data instances of E are represented

as shaded circles in the data stream. The 4-dimensional vector is then projected as a data

point in Ki space. The process is repeated for Blocki+1, using new sets of anchor points

(a1i+1 to a4i+1) from this block. Therefore, a new Ki+1 space is formed with fingerprint of E

projected onto it as a data point. Further, new data instances of E appearing in Blocki+1 are

also clustered using the anchor points of Blocki. The fingerprint of E is updated to include

these data instances.

12

2 2 2 0 1 1 0 1

Clustering of data
instances in d-

dimensional space

Entity
Fingerprint

Mapping of
fingerprint vector to
k-dimensional space

Data Stream

Figure 2.1. An example constructing an entity fingerprint using its d-dimensional data
instances which are shaded. Here, the fingerprints of entity E are 4-dimensional vectors con-
structed using 4 anchor points from corresponding blocks. The fingerprints are represented
as points in the k-dimensional spaces Ki and Ki+1 respectively.

The previous study (Aggarwal, 2014) provides a classification algorithm which aggregates

similar distributions of the same class. In addition to entity fingerprint, each entity also

13

involves another type of data structure called class profile. A class distribution or class

profile is constructed from a set of entity fingerprints belonging to the same class. It is

defined as follows:

Given a set Sc of k-dimensional fingerprints of the same class, a class profile c is repre-
sented by a (k + 2)-tuple < AG(Sc), |Sc|, labelc > where AG(·) is a k-dimensional vector
constructed by summing corresponding dimension values in Sc, |Sc| denotes the number
of fingerprints in Sc, and labelc is its associated class label.

Since a class may have multiple distribution patterns, multiple class profiles are created for

each class label, where each profile is constructed using a subset of fingerprints associated

with label. Each fingerprint is used in the construction of a unique class profile. A class label

prediction of a test entity is performed by assigning a class label of a class profile with the

least cosine distance to the test entity fingerprint. In K space, this algorithm can be viewed

as clustering entity data points belonging to the same class, and then performing 1-nearest-

neighbor (1NN) to predict the class of a test entity. The class profile (Profilej) construction

represents clustering of Sc training entity data points of the same class. Therefore, Profilej

is yet another k-dimensional data point. A test entity data point is then assigned the class

label of the nearest class profile point.

2.3.3 Ensemble Model

We now describe an ensemble based classification model to perform setwise stream classifi-

cation.

Traditional ensemble classifiers are learning methods that construct a set of classifiers

and then classify new data points by taking a weighted vote of their predictions (Kolter

and Maloof, 2007). A necessary and sufficient condition for an ensemble of classifiers to

be more accurate than any of its individual members is if the classifiers are accurate and

diverse (Hansen and Salamon, 1990). Classification in a setwise data stream is more chal-

lenging than classifying individual data instances. An entity fingerprint needs to be updated

14

as new data instances arrive in the data stream. However, a limitation in using entities for

training or testing classifiers may be that its fingerprint does not have sufficient statistical

information. In order to overcome this situation, we use a method similar to the one used

in (Aggarwal, 2014), where an entity fingerprint is not considered for training a classifier, or

for testing, until enough data instances belonging to the entity are seen.

The setwise classification is a two phase process involving vector representation of fin-

gerprints, and classification of entities in the K space. Anchor points generated from each

block construct a K space in which entity classification can be performed. We use this

k-dimensional space to define a Model as follows.

Given a set of k-dimensional anchor points constructed from a block b, a model Mb is
a (k + N + 1) tuple < A,E, z >, where A is a set of k anchor points, E is a set of
N entity-fingerprints which are projected on the Kb space, and z is the accuracy of the
classifier trained on the training entities to predict the class labels for test entities in Kb

space.

We use a subscript to a model to denote the block from which its elements were constructed.

For instance, if the ensemble Q equals {M1,M3,M4}, then the anchor points of M1 is

obtained using the 1st block of data instances. Similarly, anchor points of M3 is sampled

from the 3rd block, and that ofM4 from the 4th block. In this case, the ensemble Q contains

three models. This approach forms the ensemble-based setwise classification.

Ensemble-based Setwise Stream Classification (ESSC)

Anchor points of a model define the distribution of data instances in the K space. This

affects the distribution of fingerprints projected in this space. In addition, the fingerprint

update process changes the location of data points in K space. Projection of new entities

onto the K space, as the stream progresses, may not effectively capture its distribution since

the anchor points are only constructed using data instances from a single block. This is

especially true if entities of a new class are introduced after the model attains sufficient

statistics. To meet this set of challenges, our proposed approach, called Ensemble-based

15

Block1 Block2 Blocki Blocki+1 Blocki+r

M1
1

M2
1

M3
1

M1
2

M2
2

M3
2

M1
i

M2
i

M3
i

M1
i+1

M2
i+1

M3
i+1

Block1 Block2 Blocki Blocki+1 Blocki+r

M1
1

M2
1

M3
1

M1
2

M2
2

M3
2

M1
i

M2
i

M3
i

M1
i+1

M2
i+1

M3
i+1

M1
i+r

M2
i+r

M3
i+r

Figure 2.2. Ensemble update procedure on reading Blocki+r at which Blocki attains sufficient
statistics. Here, v = 3 models are generated per block. Mv

b represents a model constructed
with anchor points constructed using a random set of training data instances in Blockb.
Models in the ensemble are represented with dark shades, and the models which hasn’t
attained sufficient statistics are lightly shaded. Models having no shade are removed or
forgotten.

Setwise Stream Classification (ESSC), maintains a fixed-size ensemble of best performing

models, while at the same time constructs new models from the most recent data instances

in the stream. The performance is measured by the accuracy of a classifier predicting class

labels of test entities within a model.

Similar to individual entities, a model created from a block also needs to attain sufficient

statistics before a classifier can be trained and tested on entity data points projected on the

model. In order to address this issue, we require a model Mb, created at block b, to update

its statistics for r blocks further in the stream before it is considered to be included in the

ensemble. Each data instance encountered upto b+r blocks is used to update the fingerprint

of its entity. After the fledgling models are updated from the bth block to (b + r)th block, a

classifier is trained using the updated training entities and is tested on the updated testing

entities, in the Kb space. The accuracy of this classifier is then associated with z ofMb. Such

a classification is performed at the end of each block, following the (b + r)th block for Mb.

Figure 2.2 depicts an example of this ensemble update and classification procedure when a

16

new block is processed. As illustrated, the models in the ensemble (darkly shaded regions)

are the best chosen from Block1 to Blocki−1, prior to processing Blocki+r. Since we assume

that a model attains sufficient statistics after r blocks from its creation, the models created

from Blocki through Blocki+r−1 are buffered in a set M. These are illustrated as lightly

shaded regions in the figure. After processing Blocki+r, Blocki is assumed to attain sufficient

statistics. Label predictions of test entities are carried out using the corresponding models

M1
i toM3

i . The ensemble is updated with the best κ performing models, choosing from the

sets Q = {M2
1,M1

2,M3
2, . . .} and {M1

i ,M2
i ,M3

i }. This process may replace existing models

in the ensemble with newer models having better accuracy. In this example, M3
i replaces

M1
2 in Q after processing Blocki+r. A fixed-size ensemble ensures that the models do not

get outdated soon, addressing concept drift and concept evolution in data streams.

Algorithm 1 details the setwise stream classification process. A priority queue Q is used

to maintain the top κ performing models in the ensemble. A set M is used to maintain

models that have not yet achieved sufficient statistics. A set of data instances is initialized

in the initializeBlock procedure to form a block b. A set of v models Mi
b (0 < i < v) is

created by constructing k anchor points (anchorPoints) from randomly selected training

data (obtained using the getTrainingData procedure), and each of these are added to M.

At every iteration, the models in the ensemble Q are updated with data instances in b.

The updateF ingerPrint procedure associates anchor points to data instances in b, with

respect to the Kb space, and updates entity-fingerprint statistics for both training and test

entities. The predictLabel procedure trains a stochastic classifier using the training entities

encountered so far, predicting the class label for each test entity to provide a classification

accuracy. The model’s accuracy is updated with the resulting classification accuracy using

the updateAccuracy procedure. This is used to compute the top κ models in the priority

queue after processing each block. Note that the test and training entities used for this

update are only those encountered so far in the stream, and having sufficient statistics.

17

Models having insufficient statistics are buffered in M for r iterations. After processing

the next r blocks, the class label for its test entities are predicted, and the model is added to

the priority queue with the resulting prediction accuracy. Once added in the ensemble, the

model is removed from M. Finally, the least accurate model from the ensemble is iteratively

removed till the ensemble attains size κ.

In case of using class profiles for performing classification in the predictLabel procedure,

as mentioned in section 2.3.2, we use a fixed number of class profiles throughout the stream.

Training entities in each model are used to update its class profiles. We inspect all class

profiles with the same label, and find the profile whose average AG has the smallest cosine

distance (Lee, 1999) from the entity’s fingerprint. This may change the association of entities

with a class profile since entity-fingerprints are modified due to newer data instances arriving

in the stream. Subsequently, the class profiles, in turn, also update their average fingerprints.

2.4 Evaluation

In this section, we describe the datasets used to evaluate the proposed approach and present

our experimental results.

2.4.1 Datasets

We use a set of real-world and synthetic datasets to evaluate our approach. These are

described as follows.

1. Hub64 dataset consists of voice signals of 64 different personalities converted to an

8-dimensional GPCC format. Each data instance is a microsecond speech sample with

features such as pitch. The classification problem is to predict the speaker based on a

given set of speech samples. In this case, if data instances from two different speakers

are considered, the feature values of these instances may not have distinguishable

18

patterns (e.g. silence between sentences in a speech). A distribution of a set of data

instances may exhibit certain characteristic of the class label. Therefore, a setwise

classification method is appropriate. In this dataset, each speaker data is divided into

10 sets of data instances, each representing an entity. Therefore, the dataset has a

total of 640 entities with 394448 data instances.

2. ForestCover dataset is publicly available and has a total of 54 features. The classi-

fication problem is to predict the cover type of a data instance, given corresponding

feature vector. However, the dataset can be converted to a form appropriate for setwise

classification by discretizing the elevation feature to form a finite set of entities. This

discretization into 9 points is performed using its mean and standard deviation. Each

of the 10 cover-type classes is divided into 150 entities, creating a total of 1500 entities

in a stream of 578029 normalized data instances.

3. Synthetic dataset is generated from Gaussian mixture models with 50 classes from 10

different overlapping clusters. Data points generated from each of these 50 mixture

model distributions were divided into 20 entities, forming a total of 1000 entities and

having 997091 data points.

These datasets are the same as used by Aggarwal (Aggarwal, 2014). Using these datasets,

we compare the evaluation of their method (baseline) with our proposed approach. Further,

we perform pre-processing so that data instances belonging to testing and training entities

are randomly mixed to form a data stream, within each dataset. We choose the training and

test entities randomly, in the ratio of 80% and 20% respectively.

In addition to the above datasets, we evaluate our approach with two other scenarios

having the structure necessary for performing setwise classification, i.e., the association of

class labels to entities rather than individual data instances. These are the areas of Website

Fingerprinting and Social Network User-Location Estimation. We gather datasets to perform

these two tasks, and evaluate our approach. We now present the details of these datasets.

19

Website Fingerprinting

Website Fingerprinting (WF) is a Traffic Analysis (TA) attack that threatens web naviga-

tion privacy. Users accessing certain webpages may wish to protect their identity and may

use anonymous communication mechanisms to hide the content and metadata exchanged

between the browser and servers hosting the webpage. This can be performed using popu-

lar methods such as Tor network (Syverson et al., 1997). A malicious attacker wishing to

identity a webpage accessed by the user, captures the network packets by eavesdropping.

Although packet padding, content and address encryption conceal the identity of webpages

visited by a user, adversary, as a passive attacker, can still extract useful information from

padded and encrypted packets using various machine learning techniques. Such WF attacks

aim to target individuals, businesses and governments.

For the purpose of this study, we extract features from the Liberatore and Levine

dataset (Liberatore and Levine, 2006) which has been widely used for website fingerprint-

ing attacks research. The data set is a collection of traces for 2000 webpages spanning a

two-month period. Each webpage has different traces and each trace consists of uplink and

downlink packets generated when loading the webpage. Each packet contains information

like time and length in bytes. A data instance was formed by combining a group of con-

secutive packets in a specific direction, which forms a burst B. For example, consider the

following packets generated by a trace: (P1, ↑), (P2, ↑), (P3, ↓), (P4, ↓), (P5, ↓), (P6, ↑),

(P7, ↑). Here, PX denotes packet number X, ↑ denotes an uplink packet, and ↓ denotes

a downlink packet. This has three bursts: B1 is formed by (P1, ↑) and (P2, ↑) of uplink

packets, B2 by (P3, ↓), (P4, ↓), and (P5, ↓) of downlink packets, and B3 by (P6, ↑), (P7,

↑) of uplink packets.

Instead of considering each trace to be a data instance, like in earlier studies (Dyer et al.,

2012; Juarez et al., 2014), we consider each burst as a data instance in the data stream. Each

burst is a 4-dimensional feature vector with total burst time, total burst length in uplink,

20

total burst length in downlink, and trace identifier as dimensions of the vector. Here, time

corresponds to the total time of all packets in the burst, and total burst length corresponds

to the total byte-length of packets in the burst. Each trace is considered as a unique entity,

which can be associated with a webpage label. As each webpage has multiple traces and each

trace is a unique entity, each webpage will have multiple entities, none of which is shared

with any other webpage. MTU packet padding countermeasure, which is considered as one

of the effective protective techniques against WF (Dyer et al., 2012) , has been used. With

MTU padding, each packet will have the same length of MTU = 1500 bytes. A total of 128

webpages are considered for the setwise stream classification, with 16 traces of each webpage

as training entities, and 4 traces as test entities. The dataset contains a total of 228252

bursts.

Social Network User-Location Prediction

Users in a social network such as Twitter can mention their physical location in their profile.

However, this is typically a manual process, and is error prone (Chandra et al., 2011).

Therefore, prediction of user location based on the content of their messages has a huge

potential to impact location based services. For this study, a synthetic social network data-

set containing 50 locations, that are representative of class labels is prepared. For each

location, we constructed 50 users, which are modeled as entities in our framework. Each

user has at least 50 short messages. Each of these short messages is modeled as a data

point. The messages of different users are shuffled together when simulating the stream.

As with other data-sets, 80% of users are training entities and 20% users are test entities.

Each message has at least one location-related keyword. These keywords are selected from

a dictionary constructed using the open-source FIPS code datasets. For example, a user

with location ‘Texas’ may have location related keywords like ‘Richardson’, ‘Plano’, ‘Dealey

plaza’, etc in her messages. The dataset was designed such that each message of any user u

has keywords associated with a location other than u’s location with a probability of 0.2.

21

20 40 60 80 100
0

0.2

0.4

0.6

0.8

k

A
cc

u
ra

cy

(a) Hub64

20 40 60 80 100
0

0.2

0.4

0.6

0.8

k

A
cc

u
ra

cy

(b) ForestCover

20 40 60 80 100
0

0.2

0.4

0.6

k

A
cc

u
ra

cy

(c) Synthetic

20 40 60 80 100

0.1

0.2

0.3

0.4

k

A
cc

u
ra

cy

(d) Website

Figure 2.3. Accuracy vs k on datasets using SMO classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First 7 blocks;

Baseline accuracy.

20 40 60 80 100

0.5

0.6

0.7

0.8

k

A
cc

u
ra

cy

(a) Hub64

20 40 60 80 100

0.2

0.4

0.6

0.8

k

A
cc

u
ra

cy

(b) ForestCover

20 40 60 80 100
5 · 10−2

0.1

0.15

0.2

k

A
cc

u
ra

cy

(c) Synthetic

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

k

A
cc

u
ra

cy

(d) Website

Figure 2.4. Accuracy vs k on datasets using J48 classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First 7 blocks;

Baseline accuracy.

The dataset contains a total of 127500 short messages. The only features used for this are

the location-related keywords appearing in user-messages. This resulted in a sparse dataset

containing data-points with large number of features, but very few features with non-zero

values. We modified our framework to handle this data using high-dimensional clustering.

We perform subspace clustering and use iterative refinement (Vidal, 2010) to improve the

quality of the clusters. A mapping of each feature f to the clusters having non-zero value

for f is maintained for an efficient assignment of every data-point to its closest cluster. The

fingerprint update and ensemble selection follow as usual.

2.4.2 Experiments and Results

We now present our evaluation of the proposed approach.

22

20 40 60 80 100
0.4

0.6

0.8

1

k

A
cc

u
ra

cy

(a) Hub64

20 40 60 80 100

0.2

0.4

0.6

0.8

k

A
cc

u
ra

cy

(b) ForestCover

20 40 60 80 100
0

0.2

0.4

0.6

k

A
cc

u
ra

cy

(c) Synthetic

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

k

A
cc

u
ra

cy

(d) Website

Figure 2.5. Accuracy vs k on datasets using NaiveBayes classifier, with number of blocks
used to generate models : 1st block; First 3 blocks; First 5 blocks; First 7
blocks; Baseline accuracy.

20 40 60 80 100
0.4

0.6

0.8

1

k

A
cc

u
ra

cy

(a) Hub64

20 40 60 80 100

0.2

0.4

0.6

0.8

k

A
cc

u
ra

cy

(b) ForestCover

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

k

A
cc

u
ra

cy

(c) Synthetic

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

k

A
cc

u
ra

cy

(d) Website

Figure 2.6. Accuracy vs k on datasets using 5NN classifier, with number of blocks used to
generate models : 1st block; First 3 blocks; First 5 blocks; First 7 blocks;

Baseline accuracy.

1 2 3 4 5 6 7

0.75

0.8

0.85

0.9

0.95

1

Number of blocks used for constructing models

A
cc

u
ra

cy

(a) Hub64

1 2 3 4 5 6 7

0.7

0.75

0.8

0.85

Number of blocks used for constructing classifiers

A
cc

u
ra

cy

(b) ForestCover

1 2 3 4 5 6 7

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Number of blocks used for constructing classifiers

A
cc

u
ra

cy

(c) Synthetic

Figure 2.7. Accuracy of datasets using EnsembleCP with 2 models per block; 5
models per block; 10 models per block; and Baseline accuracy.

Choice of Parameters

As evident from section 2.3, ESSC algorithm has multiple parameters that can be tuned for

achieving good classification performance. These parameters include the choice of classifiers,

23

number of anchor points in a model, number of models in the ensemble, number of models

that can be constructed per block, number of blocks that can be used to construct the models

along the stream, number of blocks before a model is assumed to attain sufficient statistics,

minimum number of data instances needed to achieve sufficient statistics for an entity, and

the number of data instances in each block.

We systematically perform various experiments on all datasets to find the optimum val-

ues for these parameters. Since the number of parameters is large, we present the results of

these experiments by varying most of the parameters, which we empirically found to have a

significant effect on the classification accuracy. This includes the choice of classifiers, number

of anchor points in a model, and number of blocks that can be used to construct the models

along the stream. We choose to use the standard Weka (Hall et al., 2009) implementation

of classifiers such as NaiveBayes, SMO, J48 and 5NN to perform classification. We also

experiment on the classifier constructed using class profiles. We refer to this classifier as En-

sembleCP. Finally, we refer to the EnsembleCP classifier with a single set of anchor points

and class profiles as Baseline since this is the approach presented in a previous study (Ag-

garwal, 2014). For parameters such as number of anchor points in a model (k), and number

of blocks that can be used to construct the models along the stream, we perform a grid

search over a finite discrete domain. However, we assume a specific set of values for other

parameters for each of the experiments. We set the number of models in the ensemble to 10,

number of classifiers per block to 5, and number of blocks before a model attains sufficient

statistics to 3. These choices are based on extensive experiments, and to keep these values

consistent across all experiments for each dataset. The minimum number of data instances

needed for an entity to achieve sufficient statistics was set to 10 since for one of the datasets,

the number of data instances available for an entity was 10. In the case of EnsembleCP

and the baseline approach, we consider a fixed set of class profiles. We set the number of

class profiles to 80 for Hub64, ForestCover and Synthetic datasets. For Website and Social

24

Network datasets, we set the maximum number of class profiles to 400 to ensure creation

of at least two class profiles per class. Finally, we divide each dataset into 10 blocks for

processing the data stream.

Setup

We performed various experiments to compare the accuracy of the Baseline classifier used

in a single model with other classifiers used in the ensemble of models. In order to show

the effectiveness of the ensemble model, especially for concept evolution, we performed an

experiment where entities belonging to a new class were introduced into the data stream at

a later stage.

The experiments were conducted on a Linux machine running with four Intel R© Core
TM

2

Quad 2.5 GHz processors and 7.7 GiB of memory. We now present the results of these

experiments.

Results

Accuracies obtained on the Hub64, ForestCover, Synthetic and Website datasets using vari-

ous classifiers, and by varying the number of anchor points (k) in the range of 10 to 100, with

an increment of 10, are shown in Figures 2.3 to 2.6. These figures also show the accuracy

when using the baseline approach for comparison purpose. Average classification accuracies

obtained across all blocks in the stream by different models in the ensemble are reported.

We only show the results of these experiments on four datasets due to space constraints. The

figures show that the ensemble based approach performs better than the baseline approach in

most cases, and the performance improves with increase in k. For instance, accuracy of the

Website dataset performs significantly better than the baseline approach on all classifiers,

with the highest accuracy of 53.6% obtained when k = 100 using NaiveBayes classifier as

25

shown in Figure 2.5d. Also, it can be observed that the value of k significantly affects the

classification accuracy.

In the case of Hub64 dataset, Figures 2.4a and 2.3a show that the baseline approach

outperforms the ensemble method as k increases. As Hub64 data instances are samples

of speeches, the data instances are close to each other in its feature space. Therefore, a

decision tree (J48) or an SVM (SMO) may not be able to evaluate effective class boundaries.

However, a nearest neighbor algorithm would appropriately capture such boundaries. This

can be seen in Figure 2.6a where the ensemble model using 5NN outperforms the Baseline

approach, and provides an accuracy of 100% for k beyond 30.

In case of the ForestCover dataset, the baseline approach outperforms the ensemble based

models using SMO, J48, NaiveBayes and 5NN classifiers. This shows that the baseline classi-

fier represents the underlying data distribution better than these other classifiers. However,

a comparison of accuracies from an ensemble of models using the same type of classifier as

the baseline, in Figure 2.7b, shows that the ensemble method performs significantly better

than the baseline method.

Figures 2.3 to 2.6 also show the accuracies obtained when varying the number of blocks

used to build a set of models in the ensemble method. For instance, Figure 2.3c shows an

accuracy of 64.8% with k = 90 when using only the first block to generate models for the

ensemble. Similarly, an accuracy of 70.8% is obtained when using the first 3 blocks, 67.9%

when using the first 5 blocks, and 66.2% when using the first 7 blocks. This shows that

the accuracy of the model is not significantly affected when using multiple sets of anchor

points along the stream. The accuracy of each model is calculated using the test entities

encountered by this model in the stream. Since models created in early stages may have

encountered more training and test data instances, the accuracy may not vary with the

number of blocks used to build the model. This behavior can also be observed when using

the EnsembleCP method in Figures 2.7 and 2.8.

26

1 2 3 4 5 6 7
5 · 10−2

0.1

0.15

0.2

0.25

Number of blocks used for constructing classifiers

A
cc

u
ra

cy

(a) Website

1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

Number of blocks used for constructing classifiers

A
cc

u
ra

cy

(b) Social Network

Figure 2.8. Accuracy of datasets using EnsembleCP with 2 models per block; 5
models per block; 10 models per block; and Baseline accuracy.

1 2 3 4 5 6 7
0.7

0.75

0.8

0.85

0.9

0.95

Number of blocks used for constructing models

A
cc

u
ra

cy

(a) Hub64

1 2 3 4 5 6 7
0.6

0.65

0.7

0.75

Number of blocks used for constructing classifiers

A
cc

u
ra

cy

(b) ForestCover

Figure 2.9. Accuracy with concept evolution. EnsembleCP; and Baseline.

Figures 2.7 and 2.8 show the accuracy obtained from the EnsembleCP classifier with

all datasets, with different number of models created per block, and number of blocks used

to construct these models. For instance, Figure 2.7a shows that an accuracy of 97.1% was

obtained using the EnsembleCP method on the Hub64 dataset when using 5 models per

block, and when the first 4 blocks are used to generate new anchor points and class profiles.

These results show that more number of models per block increases the accuracy of the model.

The small variations in accuracy with increase in the number of blocks used to construct

the models, is due to the random data instances considered while computing corresponding

anchor points. The experiments were performed using k = 50. Also, the figures show that

the ensemble method outperforms the baseline approach when using similar classification

technique.

Finally, Figure 2.9 shows the accuracy obtained when concept evolution is induced on

Hub64 and ForestCover datasets, with EnsembleCP classifier. The datasets are rearranged to

ensure concept evolution by introducing data instances associated with entities belonging to

27

5% of classes in the second half of the data stream. For the EnsembleCP method, we create 10

models per block. The results show that EnsembleCP method performs significantly better

compared to the baseline method, on both these datasets, even with concept evolution.

2.5 Discussion

The distribution of data instances in a dataset can have a variety of class boundaries. Various

machine learning algorithms for data classification have been developed to model these class

boundaries. We leverage such classifiers in ESSC to perform setwise stream classification.

When new data instances arrive, the corresponding entity fingerprint is updated. This update

is performed for both testing and training entities. Therefore, we employ batch training and

testing of classifiers to predict class labels of test entities. A new classifier is trained using

the training entities, in the corresponding K space, at every block for each model in the

ensemble. This method captures the concept evolution well. A set of entities belonging to

a new class may arrive later in the stream. A new classifier built would incorporate the

training entities of this new class, and would more suitably represent the data distribution.

However, we do not perform any novel class detection (Masud et al., 2010). We leave this

for future work. Further, we evaluate the proposed approach by using the same classifier

type for each model in the ensemble. Instead, a heterogeneous set of classifiers may be used.

We leave this for future work as well.

Entity-fingerprints summarize their data instances arriving in the stream in a k-dimensional

vector. Therefore, the total amount of memory used to store these fingerprints is O(kN),

where N is the finite set of entities in the dataset. On the other hand, each model M is

a (k + N + 1)-tuple where the |A|max = k and |E|max = N . Therefore, the total memory

required to store a model is O(kN). At any point, the ensemble approach has a maximum

of Z = κ+ |M| models, which are formed by the union of models from the ensemble set Q,

and the models in M. Here, |(·)| represents the cardinality of a set.

28

In ESSC, data instances in the stream are processed sequentially. The statistical summary

is stored, and a classifier is built for each model in the ensemble during the testing phase.

Since each data instance is processed exactly once, if B is the number of data instances in

the stream, O(B) time is required to gather their statistical information. Anchor points are

periodically computed using a small set of training data instances (T) from a block. This

process takes O(|T|kdi) time, where k is the number of anchor points, d is the number of

features of data instances, and i is the number of iterations needed until convergence. The

time taken to update the accuracy of any classifier depends on the choice of the classification

algorithm used. If this takes O(C) time, building j models from the block requires O(j(C +

|T|kdi)) time.

In the EnsembleCP approach, class profiles of a class are constructed by combining a set

of close fingerprints belonging to the same class, to form class profile distributions that are

used for predicting the class label of test entities. The test entity fingerprint with sufficient

statistics is compared with these class profile distributions for closeness. Therefore, during

the construction of class profiles, the choice of fingerprints is crucial for a better quality

distributional representation of the class. By generating more classifiers and using a large

number of anchor point selections across the data stream, our approach shows a higher

probability of achieving better quality class profiles.

2.6 Conclusion

We present ESSC, a framework for ensemble-based setwise stream classification. We show

techniques to utilize various classification algorithms to predict the class label of a set of data

instances. By constructing anchor points periodically along the stream, we show a superior

classification performance compared to a previous approach that uses only a fixed initial

set of anchor points to process the entire data stream. We perform extensive experiments

to show that ESSC effectively addresses concept drift and concept evolution. We perform

29

a systematic study to determine suitable parameter values in ESSC. In addition, we use

real-world datasets including one to perform a Website Fingerprinting attack.

30

Algorithm 1: Ensemble-based Setwise Stream Classification (ESSC).

Data: < Yr, Er, labelr > stream
Input: BlockSize β, NumBlockBuffer r, EnsembleSize κ
Result: Label predictions for test entities, Etest
begin

Initialize ensemble of models Q;
Initialize buffer model M;
while data is streaming do

b←initializeBlock(β);
for i← 1 to v do

trainData←getTrainingData(b);
anchorPoints←getAnchorPoints(trainData,b);
Mi

b ←Initialize(anchorPoints,b);
M← {Mi

b, 0};
end
if Q is not empty then

for each M∈ Q do
M← updateF ingerPrint(b,M);
accuracy ← predictLabel(b,M);
Q ← updateAccuracy(accuracy,M);

end

end
if M is not empty then

for each {M, h} ∈M do
if h == r then
M← updateF ingerPrint(b,M);
accuracy ← predictLabel(b,M);
Q ← updateAccuracy(accuracy,M);
M←M \M;

end
else
{M, h} ← updateF ingerPrint(b,M);
M← {M, (h+ 1)};

end

end

end
while size(Q)> κ do
Q ← Remove least accurate M;

end

end

end

CHAPTER 3

CALCULATING EDIT DISTANCE FOR LARGE SETS OF

STRING PAIRS USING MAPREDUCE 1

This chapter analyzes the parallelization of calculating edit distance for a large set of strings

using MapReduce framework. Parallel versions of the dynamic programming solution for this

problem are developed and empirical studies that compare their performances are presented.

3.1 Introduction

Given two strings s and t, the minimum number of edit operations required to transform s

into t is called the edit distance. The edit operations commonly allowed for computing edit

distance are: (i) insert a character into a string; (ii) delete a character from a string and

(iii) replace a character of a string by another character. For these operations, edit distance

is sometimes called Levenshtein distance (nlp.stanford.edu, 2014). For example, the edit

distance between ‘tea’ and ‘pet’ is 2.

There are a number of algorithms that compute edit distances (Wagner and Fischer,

1974), (Sankoff and Kruskal, 1983a), (Masek and Patterson, 1980) and solve other related

problems (Hall and Dowling, 1980), (Sellers, 1980), (Yang and Pavlidis, 1990). Edit distance

has placed an important role in a variety of applications due to its computational efficiency

and representational efficacy. It can be used in approximate string matching, optical char-

acter recognition, error correcting, pattern recognition (Fu, 1982), redisplay algorithms for

video editors, signal processing, speech recognition, analysis of bird songs and comparing

genetic sequences (Marzal and Vidal, 1993). Sankoff and Kruskal provide a comprehensive

1Authors: Shagun Jhaver, Latifur Khan and Bhavani Thuraisingham

31

32

compilation of papers on the problem of calculating edit distance (Sankoff and Kruskal,

1983b).

The cost of computing edit distance between any two strings is roughly proportional to

the product of the two string lengths. This makes the task of computing the edit distance

for a large set of strings difficult. It is computationally heavy and requires managing large

data sets, thereby calling for a parallel processing implementation. MapReduce, a general-

purpose programming model for processing huge amounts of data with a parallel, distributed

algorithm appears to be particularly well adapted to this task. This chapter reports on

the application of MapReduce, using its open source implementation Hadoop to develop a

computational procedure for efficiently calculating edit distance.

The edit distance is usually computed by an elegant dynamic programming procedure

(nlp.stanford.edu, 2014). Although, like the divide-and-conquer method, dynamic program-

ming solves problems by combining the solutions to subproblems, it applies when the sub-

problems overlap - that is, when subproblems share subsubproblems (Cormen et al., 1990).

Each subsubproblem is solved just once, and then the answer is saved, thereby avoiding the

work of recomputing the answer every time it solves each subproblem. Unlike divide-and-

conquer algorithms, dynamic programming procedures do not partition the problem into

disjoint subproblems, therefore edit distance calculation does not lend itself naturally to

parallel implementation. This chapter develops an algorithm for calculating the edit dis-

tance for MapReduce framework and demonstrates the improvement in performance over

the usual dynamic programming algorithm used in parallel.

We implement the dynamic programming approach for this problem in a top-down way

with memoization (Cormen et al., 1990). In this approach, we write the procedure recursively

in a natural manner, but modified to save the result of each subproblem in an associative

array. The procedure now first checks to see whether it has previously solved this subproblem.

If so, it returns the saved value, saving further computation at this level; if not, the procedure

33

computes the value in the usual manner (Cormen et al., 1990). Finding edit distance of a

pair of strings (s, t) entails finding the edit distance of every pair (s′, t′), where s′ and t′ are

substrings of s and t respectively. All these distances are saved in an associative array h.

Subsequently, if any new pair of strings share a pair of substrings for which the distance is

already stored in h, the saved values are used, thereby saving the computation time. Pairs of

strings that are likely to share common substrings are processed together, thus improving the

performance over the standard dynamic programming parallel application for this problem.

The contributions of this work are as follows. First, to the best of our knowledge, this

is the first work that addresses the calculation of unnormalized edit distance for a large

number of string pairs in a parallel implementation. Our implementation in MapReduce im-

proves upon the performance of usual dynamic programming implementation on a single ma-

chine. Second, our proposed approach, which uses an algorithm tailored to the MapReduce

framework architecture performs better than the simple parallel implementation. Finally,

this serves as an example of using the MapReduce framework for dynamic programming

solutions, and paves the way for parallel implementation for other dynamic programming

problems.

In particular, the requirement for calculating edit distance for a large number of pairs

of strings emerged in one of our previous research projects (Parveen et al., 2013) on finding

normative patterns over dynamic data streams. This project uses an unsupervised sequence

learning approach to generate a dictionary which will contain any combination of possible

normative patterns existing in the gathered data stream. A technique called compression

method (CM) is used to keep only the longest and most frequent unique patterns according

to their associated weight and length, while discarding other subsumed patterns. Here, edit

distance is required to find the longest patterns.

The remainder of this chapter is organized as follows. Section II discusses the problem

statement and the dynamic programming solution to the problem on a single machine.

34

Section III discusses our proposed approach, and the techniques used in detail. Section IV

reports on the experimental setup and results. Section V then describes the related work,

and Section VI concludes with directions to future work.

3.2 Background

The edit distance problem is to determine the smallest number of edit operations required

for editing a source string of characters into a destination string. For any two strings s =

s1s2....sm and t = t1t2...tn over an input alphabet of symbols σ = {a1, a2, ...ar}, the valid

operations to transform s into t are:

• Insert a character tj appearing in string t

• Delete a character si appearing in string s

• Replace a character si appearing in string s by a character tj in string t

For strings s = s1s2....sm and t = t1t2...tn, and an associative array h storing the edit

distance between s and t, this problem can be solved sequentially in O(mn) time. The

memoized dynamic programming algorithm for this, MEM ED, is described in Algorithm

3.1:

For an input pair of strings (s, t), step 1 in MEM ED algorithm checks whether the pair

is already stored in the input associative array h. If present, the algorithm returns the stored

value for (s, t) in step 2. If one of the strings is empty, MEM ED returns the length of the

other string as the output. Steps 10-11 in this algorithm divide the problem inputs into

subproblem inputs of smaller size. Steps 12 - 14 calculate the edit distance recursively for

these subproblems. Step 20 derives the edit distance for the problem, and step 21 stores this

result in an associative array, h for further use, thereby memoizing the recursive procedure.

Fig. 3.2 shows the associative array entries for calculating the edit distance between

two strings - ‘levenshtein’ and ‘meilenstein’. For example, for calculating the edit distance

35

Figure 3.1. EDIT-DISTANCE(s[1, 2, ..m], t[1, 2, ..., n], h): (MEM ED).

between the string pair (‘levens’, ‘meilens’), the edit distances ka, kb and kc for the pairs

(‘leven’, ‘meilen’), (‘levens’, ‘meilen’) and (‘leven’, ‘meilens’) are considered respectively.

By a recursive procedure in steps 12-14 of MEM ED, these values are calculated to be 3,

36

4 and 4 respectively. Since the input string pair (‘levens’, ‘meilens’) have the same last

character ‘s’, the value kd is calculated to be equal to ka = 3 in steps 15-19 of MEM ED.

Step 20 computes c, the minimum of kb, kc and kd to be 3. Step 21 associates string pair

(‘levens’, ‘meilens’) with value 3 in the associative array h for further use. Step 22 returns

this edit distance value.

Figure 3.2. Edit Distance between two strings.

On a single machine, we compute the edit distance for every pair of distinct strings in

an input text document by repeatedly using MEM ED for each pair of distinct strings. The

SIN ED procedure in Algorithm 3.3 describes this approach.

Step 1 in SIN ED algorithm collects all the distinct strings in the input document. Step 3

initializes an associative array. Step 4 uses the EDIT DISTANCE procedure of MEM ED to

calculate the edit distance for each distinct string pair. The implementation of SIN ED takes

O(t2n2) time for t distinct strings and string length of order n. This is computationally very

expensive; hence we need to implement this algorithm in parallel for faster computations.

37

Figure 3.3. Single Machine Implementation for calculating Edit Distance for all string pairs
(SIN ED).

3.3 Related Work

Extensive studies have been done on edit distance calculations and related problems over the

past several years. Ristad and Yianilos (Ristad and n. Yianilos, 1998) provide a stochastic

model for learning string edit distance. This model allows for learning a string edit distance

function from a corpus of examples. Bar-yossef, Jayram, Krauthgamer and Kumar develop

algorithms that solve gap versions of the edit distance problem (Bar-Yossef et al., 2004):

given two strings of length n with the promise that their edit distance is either at most k or

greater than l, these algorithms decide which of the two holds.

A lot of studies have been dedicated to normalized edit distance to effect a more rea-

sonable distance measure. Abdullah N. Arslan and Ömer Egecioglu discuss a model for

computing the similarity of two strings X and Y of lengths m and n respectively where X is

transformed into Y through a sequence of three types of edit operations: insertion, deletion,

and substitution. The model assumes a given cost function which assigns a non-negative

real weight to each edit operation. The amortized weight for a given edit sequence is the

ratio of its weight to its length, and the minimum of this ratio over all edit sequences is

38

the normalized edit distance. Arslan and Egecioglu (Arslan, 1999) give an O(mn logn)-time

algorithm for the problem of normalized edit distance computation when the cost function

is uniform, i.e, the weight of each edit operation is constant within the same type, except

substitutions which can have different weights depending on whether they are matching or

non-matching.

Jie Wei proposes a new edit distance called Markov edit distance (Wei, 2004) within the

dynamic programming framework, that takes full advantage of the local statistical depen-

dencies in the string/pattern in order to arrive at enhanced matching performance. Higuera

and Micó define a new contextual normalized distance, where each edit operation is divided

by the length of the string on which the edit operation takes place. They prove that this

contextual edit distance is a metric and that it can be computed through an extension of

the usual dynamic programming algorithm for the edit distance (de la Higuera, 2008).

Fuad and Marteau propose an extension to the edit distance to improve the effectiveness

of similarity search (Fuad, 2008). They test this proposed distance on time series data bases

in classification task experiments and prove, mathematically, that this new distance is a

metric.

Robles-Kelly and Hancock compute graph edit distance by converting graphs to string

sequences, and using string matching techniques on them (Robles-Kelly and Hancock., 2005).

They demonstrate the utility of the edit distance on a number of graph clustering problems.

Bunke introduces a particular cost function for graph edit distance and shows that under

this cost function, graph edit distance computation is equivalent to the maximum common

subgraph problem (Bunke, 1997).

Hanada, Nakamura and Kudo discuss the issue of high computational cost of calculating

edit distance of a large set of strings (Hanada et al., 2011). They contend that a poten-

tial solution for this problem is to approximate the edit distance with low computational

cost. They list the edit distance approximation methods, and use the results of experi-

ments implementing these methods to compare them. Jain and Rao present a comparative

39

study to evaluate experimental results for approximate string matching algorithms such as

Knuth-Morris-Pratt, Boyer-Moore and Raita on the basis of edit distance (Jain and Rao,

2013).

A few studies have also been done that target a parallel implementation of calculating

normalized edit distance. Instead, in this work, we address the calculation of unnormalized

edit distance for large number of string pairs in a parallel implementation, and we use

MapReduce for it.

3.4 Proposed Approach

We discussed in the Background section that the single machine implementation for calculat-

ing the edit distance of all distinct pairs of strings, described in SIN ED, is computationally

expensive. We propose a parallel computing approach to do this more efficiently.

MapReduce is emerging as an important programming model for expressing distributed

computations in data-intensive applications (Yan et al., 2012). It was originally proposed

by Google and is built on well-known principles in parallel and distributed processing dating

back several decades. MapReduce has since enjoyed widespread adoption via Hadoop, a

popular open-source implementation developed primarily by Yahoo and Apache. It enables

easy development of scalable approaches to efficiently processing massive amounts of data on

clusters of commodity machines. MapReduce systems are evolving and extending rapidly and

today, Hadoop is a core part of the computing infrastructure for many web companies, such

as Facebook, Amazon, Yahoo and Linkedin. Because of its high efficiency, high scalability,

and high reliability, MapReduce framework is used in many fields (Yan et al., 2012), such

as life science computing (Ekanakake et al., 2010), text processing, web searching, graph

processing (Malewicz et al., 2010), relational data processing, data mining, machine learning

(He et al., 2011) and video analysis (Pereira et al., 2010).

40

We use the MapReduce framework for the parallel implementation of calculating edit

distance for a large set of strings. The idea is to use the associative array in SIN ED to store

the edit distances across the computations for many pairs of strings. Once the edit distance

for a pair of strings (s, t) is calculated, the edit distance for all pairs (s′, t′), where s′ and t′

are substrings of s and t respectively are stored in the associative array. Subsequent to this,

for a new pair of strings (a, b), the calculations at steps 12, 13 and/or 14 in MEM ED can

be saved, if the input pairs of strings for these steps already have an entry in the associative

array.

The SIM MR algorithm (Algorithm 3.4) describes a simple Map Reduce approach to

calculating edit distance in parallel using these ideas.

SIM MR first constructs a list of distinct strings from the input document in Step 3 in

the Mapper phase. The ‘count′ variable initialized in Step 4 tracks the count of the string

pair being processed. The ‘num reducers’ parameter determines the number of reducers to

be used in the reduce phase of the procedure. The ‘reducer index′ variable determines the

reducer that would process the current string pair. The value of ‘reducer index′ is calculated

in Step 7. This value is independent of the strings in the string pair being processed. Step

8 emits with ′reducer index′ as the key and the current string pair as the value.

In the reduce phase, an associative array, H is initialized in Step 13. For every input

string pair, Step 15 calculates the edit distance of the current string pair using H with the

EDIT DISTANCE procedure of MEM ED. The entries stored in H during the edit distance

calculations of any string pair can be used across calculations for different string pairs. Step

16 emits the string pair with its corresponding edit distance value.

We note that the reducer index value in SIM MR depends just on the count of the string

pair being processed. We propose a modified algorithm that uses the strings in the string

pair to effect a more efficient way of determining the reducer where the current string pair

gets processed.

41

Figure 3.4. Simple MapReduce approach to calculating Edit Distance for all string pairs
(SIM MR).

The pairs of strings to be processed at a single node need to be chosen such that they are

likely to have some pairs of substrings for which the edit distance has already been computed,

and the computation time is saved via an associative array look-up. To accomplish this, we

collect all pairs of strings with a common prefix pair at a single reducer node. This prefix

pair is constructed by taking the first prefix length characters of both strings to form a

42

Figure 3.5. Prefixed MapReduce approach to calculating Edit Distance for all string pairs
(PRE MR).

string pair. The procedure for the proposed approach, PRE MR, is described in Algorithm

3.5.

For the current string pair (s, t), Steps 5 and 6 in PRE MR calculate the s prefix and

t prefix values by taking the first prefix length characters from s and t respectively. For

example, for prefix length = 2, and string pair (s, t) = (‘mango’, ‘gate’), the s prefix and

43

t prefix values are computed to be ‘ma’ and ‘ga’ respectively. Step 7 emits with the string

pair (s prefix, t prefix) as the key, and the string pair (s, t) as the value.

The reduce phase for PRE MR is similar to the reduce phase in the SIM MR procedure.

An associative array H is initialized in step 12, and the edit distance of every string pair in

pairs [(s1, t1), (s2, t2),...] is computed using the EDIT DISTANCE procedure of MEM ED.

Step 15 emits the results.

Figure 3.6. PRE MR algorithm flow-chart.

Hadoop runs its map and reduce processes in such a way that these processes operate

on independent chunks of data and have no inter process communication. We’ve customized

44

our algorithms to satisfy this constraint. For PRE MR, the mapper sends all string pairs

sharing the same pair of prefixes to a single reducer. In the reduce stage, all these string pairs

are processed together. For each string pair, the associative array H saves the calculated

intermediate edit distances, and a look-up in this array often saves the computations for

many other pairs of strings that are input to this reducer. These savings in computations

make our algorithms, especially PRE MR more efficient than the SIN ED approach.

Fig. 3.6 shows an example of the implementation for PRE MR algorithm with ‘prefix length’

= 2. Mapper constructs a prefix pair (‘ma’, ‘la’) for input pair of strings (‘mad’, ‘laughter’),

and emit with (‘ma’, ‘la’) as the key and (‘mad’, ‘laughter’) as the value. In the reduce phase,

all strings pairs sharing the prefix (‘ma’, ‘la’) are processed together. Therefore, the string

pairs (‘mad’, ‘laughter’) and (‘madness’, ‘laugh’) are processed at the same node. Since these

string pairs share common substrings, many computations are saved, and the procedure is

faster.

3.5 Experimental Setup and Results

Our hadoop cluster (cshadoop0-cshadoop9) has ten virtual machines that run in the Com-

puter Science vmware esx cloud. Each of these VM’s has 4 GB of RAM and a 256 GB virtual

hard drive. These VM’s are spread across three ESX hosts to balance the load. We’ve used

one name node and nine slave nodes. For our implementation, we used Hadoop version 1.0.4

and JAVA JDK version 1.6.0.37.

The data sets were created from the ebooks for which the copyright has expired. We

used the text of ‘Pride and Prejudice’ by Jane Austen available at http://www.gutenberg.

org/ebooks/1342, and developed files of size 10kB, 20kB,..., 100kB from it.

We implemented a preprocessing step for each of the experiments, where all the duplicate

strings in the input files were eliminated, thus all the experiments described have been

conducted on unique strings.

http://www.gutenberg.org/ebooks/1342
http://www.gutenberg.org/ebooks/1342

45

We processed each of these files using SIN ED, SIM MR and PRE MR algorithms. The

results are described in Table 3.1 and Fig. 3.7. It shows the comparison of the performance

of neutral baseline of SIN ED implementation (plain sequential implementation) with our

proposed algorithms. For Fig. 3.7, we’ve taken the input file sizes (in kB) on the x-axis

and the times taken by each of the procedures (in seconds) on the y-axis. These results are

obtained using 4 reducer nodes.

Table 3.1. SIN ED vs. SIM MR vs. PRE MR implementation.

File Size SIN ED SIM MR PRE MR

10 kB 12 sec 72 sec 68 sec
20 kB 33 sec 73 sec 70 sec
30 kB 62 sec 82 sec 71 sec
40 kB 90 sec 94 sec 76 sec
50 kB 122 sec 147 sec 79 sec
60 kB 155 sec 120 sec 80 sec
70 kB 189 sec 125 sec 85 sec
80 kB 218 sec 140 sec 88 sec
90 kB 276 sec 145 sec 93 sec
100 kB 293 sec 209 sec 101 sec

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

File size (kB)

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
)

SIN_ED

SIM_MR

PRE_MR

Figure 3.7. SIN ED vs. SIM MR vs. PRE MR implementation.

46

Table I results indicate that PRE MR algorithm gives the best results. For example, for

a file of size 80 kB, SIN ED takes 218 sec, SIM MR takes 140 sec and PRE MR algorithm

takes 88 sec. Therefore, we conduct the rest of the experiments only for PRE MR.

We experimented with different values of the parameter ‘prefix length′ used in the MAP

phase for the PRE MR implementation. The time taken for different file sizes are docu-

mented in Table 3.2, and Fig. 3.8. For Fig. 3.8, the x-axis is file size (in kB), and the

y-axis is the runtime for experiments with different ‘prefix length’ values. For this ex-

periment, we chose to use 2 mappers and 1 reducer in each case. We see that, generally,

smaller ‘prefix length’ values tend to give better performance. For example, for a file of

size 80 kB, ‘prefix length’ = 1 case takes 100 sec, ‘prefix length’ = 2 case takes 113 sec,

‘prefix length’ = 3 case takes 132 sec and ‘prefix length’ = 4 case takes 150 sec.

Table 3.2. PRE MR performance for different prefix length values.

File Size prefix length=1 prefix length=2 prefix length=3 prefix length=4

10 kB 67 sec 69 sec 65 sec 66 sec
20 kB 72 sec 72 sec 75 sec 78 sec
30 kB 77 sec 79 sec 82 sec 87 sec
40 kB 79 sec 82 sec 86 sec 96 sec
50 kB 90 sec 90 sec 102 sec 112 sec
60 kB 93 sec 105 sec 115 sec 120 sec
70 kB 94 sec 108 sec 116 sec 134 sec
80 kB 100 sec 113 sec 132 sec 150 sec
90 kB 106 sec 121 sec 158 sec 155 sec
100 kB 108 sec 131 sec 134 sec 166 sec

We also experimented with different number of reducers in the PRE MR implementation

for three cases: ‘prefix length’ = 1, ‘prefix length’ = 2 and ‘prefix length’ = 3. In each

case, in the corresponding Fig., we take the file size as the x-axis and the runtime for the

experiment as the y-axis.

Table 3.3 and Fig. 3.9 detail the times taken for this experiment when the ‘prefix length’

parameter is set to 1. We see that the performance generally improves with increasing number

47

10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

File size (kB)

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
)

prefix_length = 1

prefix_length = 2

prefix_length = 3

prefix_length = 4

Figure 3.8. PRE MR performance for different prefix length values.

of reduce nodes. For example, for a file of size 80 kB, 1 reducer node takes 100 sec, 2 reducers

take 91 sec and 4 reducers take 88 sec.

Table 3.3. PRE MR performance for different number of reducers, prefix length=1.

File Size 1 reducer 2 reducers 4 reducers

10 kB 67 sec 65 sec 68 sec
20 kB 72 sec 68 sec 70 sec
30 kB 77 sec 69 sec 71 sec
40 kB 79 sec 75 sec 76 sec
50 kB 90 sec 86 sec 79 sec
60 kB 93 sec 95 sec 80 sec
70 kB 94 sec 90 sec 85 sec
80 kB 100 sec 91 sec 88 sec
90 kB 106 sec 96 sec 93 sec
100 kB 108 sec 112 sec 101 sec

Table 3.4 and Fig. 3.10 describe the times taken when the ‘prefix length’ parameter in

PRE MR is set to 2. For example, for a file of size 90 kB, 1 reducer node takes 121 sec, 2

reducers take 117 sec, and 4 reducers take 102 sec.

Table 3.5 and Fig. 3.11 list the times taken for PRE MR when the ‘prefix length’ param-

eter is set to 3. Again, increasing the number of nodes in reduce phase tend to improve the

48

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

105

110

115

File size(kB)

T
im

e
 t

a
k
e

n
(i
n

 s
e

c
)

1 reducer

2 reducers

4 reducers

Figure 3.9. PRE MR performance for different number of reducers, prefix length=1.

Table 3.4. PRE MR performance for different number of reducers, prefix length=2.

File Size 1 reducer 2 reducers 4 reducers

10 kB 69 sec 63 sec 67 sec
20 kB 72 sec 66 sec 71 sec
30 kB 79 sec 72 sec 73 sec
40 kB 82 sec 76 sec 82 sec
50 kB 90 sec 81 sec 78 sec
60 kB 105 sec 91 sec 90 sec
70 kB 108 sec 98 sec 89 sec
80 kB 113 sec 97 sec 97 sec
90 kB 121 sec 117 sec 102 sec
100 kB 131 sec 111 sec 101 sec

performance. For example, for a file of size 80 kB, 1 reducer case takes 132 sec, 2 reducers

take 124 sec and 4 reducers take 108 sec.

Table 3.6 and Fig. 3.12 describe the times taken for different number of mappers for

PRE MR with prefix length set to 1 and 4 reducers. In Fig. 3.12, the x-axis labels the size

of the input file, and the runtime for the experiment are on the y-axis. As expected, with

increase in the number of mapper nodes, the performance tends to improve. For example,

for a file of size 80 kB, 2 mappers take 88 sec, 4 mappers take 85 sec and 8 mappers take 82

sec.

49

10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

130

140

File size (kB)

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
)

1 reducer

2 reducers

4 reducers

Figure 3.10. PRE MR performance for different number of reducers, prefix length=2.

Table 3.5. PRE MR performance for different number of reducers, prefix length=3.

File Size 1 reducer 2 reducers 4 reducers

10 kB 65 sec 67 sec 67 sec
20 kB 75 sec 73 sec 77 sec
30 kB 82 sec 77 sec 82 sec
40 kB 86 sec 84 sec 104 sec
50 kB 102 sec 94 sec 95 sec
60 kB 115 sec 93 sec 92 sec
70 kB 116 sec 99 sec 114 sec
80 kB 132 sec 124 sec 108 sec
90 kB 158 sec 127 sec 98 sec
100 kB 134 sec 115 sec 122 sec

We observe in the results for PRE MR performance that the running time does not

always decrease when the number of mappers or reducers increases. We believe that this

is because MapReduce resources are used to split the data and send it across to different

nodes, and the intermediate results need to be shuffled across the network.

For the full text of Pride and Prejudice by Jane Austen, performing PRE MR with 2

mappers and 4 reducers and after dividing the text into chunks of 100 kB took 684 seconds,

when the ‘prefix length′ parameter is set to 2. Using SIN ED to do this after dividing the

text into chunks of 10 kB took 967 seconds. However, we note that when reducing the file

50

10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

130

140

150

160

File size (kB)

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
)

1 reducer

2 reducers

4 reducers

Figure 3.11. PRE MR performance for different number of reducers, prefix length=3.

Table 3.6. PRE MR performance for different number of mappers, prefix length=1, number
of reducers=4.

File Size 2 mappers 4 mappers 8 mappers

10 kB 68 sec 67 sec 66 sec
20 kB 70 sec 67 sec 67 sec
30 kB 71 sec 69 sec 67 sec
40 kB 76 sec 75 sec 76 sec
50 kB 79 sec 73 sec 74 sec
60 kB 80 sec 84 sec 78 sec
70 kB 85 sec 84 sec 82 sec
80 kB 88 sec 85 sec 82 sec
90 kB 93 sec 91 sec 90 sec
100 kB 101 sec 101 sec 90 sec

chunk size, the number of distinct string pairs, p reduce drastically, as p is proportional to the

square of the number of distinct strings. So, we expect that the performance improvement

using PRE MR is much more than what this result indicates.

We verified the reproducibility of the experiments by carrying out each of the experiments

multiple times, and taking the average values. Besides, it was found that the results obtained

had little standard deviation. In some additional experiments, for an increasing number of

compute nodes, the improvement in performance was found to be quite substantial as the file

51

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

105

File size (kB)

T
im

e
 t

a
k
e

n
 (

in
 s

e
c
)

2 mappers

4 mappers

8 mappers

Figure 3.12. PRE MR performance for different number of mappers.

size increased over 100 kB. For keeping the uniformity of the results across all experiments,

we haven’t presented the results for file sizes more than 100 kB or for larger number of map

and reduce nodes, since we hadn’t evaluated these cases on all experiments. The presented

results are aimed to show trends in performance change with varying file sizes and different

number of computation nodes.

3.6 Conclusions and Future Work

Although there are several efficient algorithms for calculating edit distance and related prob-

lems, computing edit distance for a large set of strings is expensive. We propose an efficient

parallel implementation for this, using MapReduce. With support from our experimental re-

sults of Section IV, we argue that our approach is much more efficient than the usual dynamic

programming method. We can also tune the ‘prefix length′ parameter in PRE MR, and

the number of nodes used in the map phase and reduce phase to improve the performance

of our algorithms for varying input file sizes.

As the number of mapper and reducer nodes are increased in MapReduce, there is greater

parallelization and the number of processes increase. In Table 3.1, PRE MR is three times

52

faster than the sequential procedure because it uses 4 reducers instead of 1. The speedup is

not substantial when doubling the mappers and reducers because as mentioned previously,

MapReduce resources are used to split the data and send it to these nodes, and the inter-

mediate results are shuffled across the network. However, we expect this to get more than

compensated for with larger files, where each prefix pair would be expected to have a larger

number of corresponding string pairs, and thus each reduce process initiated would produce

more results.

The optimal number of mappers, reducers and the ‘prefix length′ parameter value vary

with the file size and file content. It is hoped that the results on varied experiments presented

can help guide towards a good initial guess for these parameters.

The field of dynamic programming problems is far from exhausted when it concerns

creating scalable, effective, parallel algorithms. We argue, however, that our algorithms are

a step in the right direction. Future research includes further testing to explore their efficiency

in different datasets. In addition, further analysis of dynamic programming algorithms can

lead to more effective MapReduce solutions, especially for problems that require ad-hoc data

analysis.

CHAPTER 4

COMPARATIVE ANALYSIS OF CLASSIFIERS PREDICTING

POLITENESS AND APPLICATION IN WEB-LOGS 1

This chapter develops a computational framework for identifying and characterizing polite-

ness markings in text documents. A number of classifiers are constructed for this task and a

comparison of their results is presented. An application is also designed where this framework

has been used to study the politeness levels in a variety of web-logs.

4.1 Introduction

Politeness, deference and tact have a sociological significance altogether beyond the level of

table manners and etiquette books (Goffman, 1971). Politeness, introduced into linguistics

more than forty years ago, has emerged as a vital and rapidly developing area of study. Brown

and Levinson’s (1978, 1987) classic treatment of linguistic politeness show that politeness

strategies are a basis for social order. The concepts inherent to their model have been

invoked in much subsequent literature which has focused on linguistic carriers of politeness

(e.g., speech acts, syntactic constructions, lexical items, etc.), seeking to quantify them, to

compare them across cultures and genders, and to identify universals (Meier, 1999).

Danescu-Niculescu-Mizil, Sudhof, Jurafsky, Leskovec and Potts (Danescu-Niculescu-Mizil

et al., 2013) develop a computational framework for identifying and characterizing the lin-

guistic aspects of politeness. Their investigation is guided by a new corpus of requests

annotated for politeness, that they constructed and released. This corpus consists of a large

1Authors: Shagun Jhaver and Latifur Khan

53

54

collection of requests from two different sources - Wikipedia and Stack Exchange. Both of

these are large online communities in which users frequently make requests of other members.

In this Project, We use this richly labeled data for politeness to construct politeness classi-

fiers using different supervised and unsupervised machine learning algorithms, and present a

comparative analysis of the performance of these classifiers. We also study the improvement

in classifiers’ performance after they use a wide range of lexical, sentiment and dependency

features operationalizing key components of politeness theory.

We observe that some of the classifiers achieve near human-level accuracy across different

test-sets, which demonstrates the consistent nature of politeness strategies, and We use these

classifiers with new data for further analysis of the relation of politeness to social factors.

We select the web-log (blog) entries from a variety of blogs, assign these entries a politeness

score on a scale of 0 to 1 using the classifiers we build, and compare these scores.

4.2 Background

The meaning of politeness and concomitant concepts, and the claims for universals have

shown considerable divergence and lack of clarity as they have received increased atten-

tion since Brown and Lewinson’s proposed framework (Meier, 1999), (Brown and Levinson,

1978), (Brown and Levinson, 1987). Scholars use a variety of approaches to account for

politeness: the social-norm view, the conversational-maxim view; the face-saving view; and

the conversational-contract view (Fraser, 1990). While none of these views is considered ad-

equate, the face-saving view by Brown and Levinson is seen as the most clearly articulated

and is the most popular.

Brown and Levinson contend that linguistic politeness must be communicated, that it

constitutes a message. They assert that the failure to communicate the intention to be

polite may be taken as absence of the required polite attitude. They propose a framework

55

to explain politeness in which their rational Model Person has ‘face’, the individual’s self-

esteem. This face is a culturally elborated public self-image that every member of a society

wants to claim for himself (Fraser, 1990). They characterize two types of face in terms of

participant wants rather than social norms:

Negative Face: “the want of every ‘competent adult member’ that his action be unim-

peded by others”

Positive Face: “the want of every member that his wants be desirable to at least some

others”

The organizing principle for their politeness theory is the idea that “some acts are intrin-

sically threatening to face and thus require softening ...” To this end, each group of language

users develops politeness principles from which they derive certain linguistic strategies. It

is by the use of these so-called politeness strategies that speakers succeed in communicating

both their primary message(s) as well as their intention to be polite in doing so. And in

doing so, they reduce the face loss that results from the interaction.

The choice of a specific linguistic form is to be viewed as a specific realization of one of the

politeness strategies in light of the speaker’s assessment of the utterance context. Brown and

Levinson outline four main types of politeness strategies: bald on-record, negative politeness,

positive politeness, and off-record (indirect). The speaker must choose a linguistic means that

will satisfy the strategic end. Since each strategy embraces a range of degrees of politeness,

the speaker will be required to consider the specific linguistic forms used and their overall

effect when used in conjunction with one another.

We try to identify such strategies and use them to construct the classifiers. A brief

description of the classifiers We used is given below.

1) Naive Bayes : Naive Bayes is a highly practical learning method whose performance

is shown to be comparable to that of neural network and decision tree learning in some

domains. It applies to the learning tasks where each instance x is described by a conjunction

56

of attribute values and where the target function f(x) can take on any value from some finite

set V . A set of training examples of the target function is provided, and a new instance is

presented, described by the tuple of attribute values <al, a2, ..., an>. The learner is asked

to predict the target value, or classification, for this new instance. The Bayesian approach

to classifying the new instance is to assign the most probable target value, VMAP , given the

attribute values <al, a2, ..., an> that describe the instance (Mitchell, 1997).

The naive Bayes classifier is based on the simplifying assumption that the attribute

values are conditionally independent given the target value. In other words, the assumption

is that given the target value of the instance, the probability of observing the conjunction

al, a2, ..., an is just the product of the probabilities for the individual attributes.

2) Naive Bayes Multinomial : In the multinomial model, a document is an ordered se-

quence of word events, drawn from the same vocabulary V. It is assumed that the lengths of

documents are independent of class. Again, an assumption similar to naive Bayes is made:

that the probability of each word event in a document is independent of the word’s context

and position in the document. Thus, each document di is drawn from a multinomial distri-

bution of words with as many independent trials as the length of di. This yields the familiar

“bag of words” representation for documents (McCallum and Nigam, 1998). Whereas simple

naive Bayes would model a document as the presence and absence of particular words, multi-

nomial naive bayes explicitly models the word counts and adjusts the underlying calculations

to deal with in.

3) J48 : J48 is an open source Java implementation of the C4.5 algorithm in the weka data

mining tool. C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan.

C4.5 is an extension of Quinlan’s earlier ID3 algorithm. The decision trees generated by C4.5

can be used for classification, and for this reason, C4.5 is often referred to as a statistical

classifier. At each node of the tree, C4.5 chooses the attribute of the data that most effectively

splits its set of samples into subsets enriched in one class or the other. The splitting criterion

57

is the normalized information gain (difference in entropy). The attribute with the highest

normalized information gain is chosen to make the decision. The C4.5 algorithm then recurses

on the smaller sublists (j48, 2014).

4) Random Forest : Random Forests grow many classification trees. To classify a new

object from an input vector, the input vector is put down each of the trees in the forest.

Each tree gives a classification, and we say the tree “votes” for that class. The forest chooses

the classification having the most votes (over all the trees in the forest).

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample N cases at random - but with

replacement, from the original data. This sample will be the training set for growing

the tree.

2. If there are M input variables, a number m<<M is specified such that at each node,

m variables are selected at random out of the M and the best split on these m is used

to split the node. The value of m is held constant during the forest growing.

3. Each tree is grown to the largest extent possible. There is no pruning.

5) IBk : This is an implementation of the k-nearest neighbors algorithm. This basic

instance-based algorithm assumes all instances correspond to points in the n-dimensional

space. The nearest neighbors of an instance are defined in terms of the standard Euclidean

or Manhattan distance. The value of the classification label for an input x returned by this

algorithm is just the most common value of label among the k training examples nearest to

x (Mitchell, 1997).

6) SMO : Sequential minimal optimization (SMO) is an algorithm for solving the op-

timization problem which arises during the training of support vector machines. It was

invented by John Platt in 1998 at Microsoft Research. SMO is widely used for training

58

support vector machines and is implemented by the popular LIBSVM tool. SMO breaks the

optimization problem in SVM into a series of smallest possible sub-problems, which are then

solved analytically (smo, 2014).

4.3 Experiments

Similar to Danescu-Niculescu-Mizil et al (Danescu-Niculescu-Mizil et al., 2013), the training

data is from two different domains:

1. Wikipedia

2. Stack Exchange

The experiments are on two different types of classifiers:

1. Bag of Words classifier (BOW)

2. Linguistically Informed classifer (Ling.)

For Linguistically Informed classifer (Ling.), We use the features described in (Danescu-

Niculescu-Mizil et al., 2013) and reproduced here in Table 4.1:

We use Weka (Waikato Environment for Knowledge Analysis), a popular suite of machine

learning software written in Java, developed at the University of Waikato, New Zealand for

all my experiments.

We run experiments of two types:

1. In-domain: We use 5-fold cross-validations for these experiments. The experiments

are:

• Training on Wikipedia, Testing on Wikipedia

• Training on Stack-Exchange, Testing on Stack-Exchange

59

Table 4.1. Politeness Strategies used by Danescu-Niculescu-Mizil et al (Danescu-Niculescu-
Mizil et al., 2013) for features in Linguistically Informed Classifiers.

Strategy Description

Gratitude Contains words like “appreciate”, “thankful”,
“grateful”, “recognize”, “indebted”

Deference Contains words like “Nice work”, “respect”, “po-
lite”

Greeting Use of words like “Hey”, “Hi”, “Hello”, “take
care”, “bye”, “Good morning”, “Dear”, “what’s
up”, “welcome”

Positive lexicon Contains words in positive lexicon
Negative lexicon Contains words in negative lexicon
Apologizing Contains words like “sorry”, “pardon”, “regret”,

“apologize”, “ashamed”, “regretful”, “penitent”
Please Contains “please”
Please start Starts with “please”
Indirect (btw) Contains phrases like “by the way”, “btw”
Direct question Contains sentences beginning with “wh” and end-

ing with “?”
Direct start Contains sentences beginning with “So”, “Well”,

etc
Counterfactual modal (Could/Would) Contains sentences beginning with “could”,

“would”, etc
Indicative modal (Can/Will) Contains sentences beginning with “can”, “will”,

etc
First Person Start Contains sentences beginning with “I”, “We”,

etc.
First Person plural Use of words like “I”, etc.
First Person Use of words like “me”, etc.
Second Person Contains words like “you”, etc.
Second Person Start Contains sentences beginning with “you”,

“your”, etc.
Hedges Contains phrases like “I suggest”
Factuality Contains phrases like “In fact”

60

2. Cross-domain:

• Training on Wikipedia, Testing on Stack-Exchange

• Training on Stack-Exchange, Testing on Wikipedia

The training and 5-fold cross-validation (In-domain) is done as follows:

1. Sort the training requests by their politeness scores.

2. Get top 25% of requests, and label them as positive.

3. Get bottom 25% of requests, and label them as negative.

4. Divide the data into 80% for training and 20% for testing.

5. Run classifier training procedure on training data.

6. Test the classifier on testing data.

7. Go back to Step 4 to repeat the procedure for different sets of training and testing

data, and then take the average performance.

For cross-domain experiments, We train the classifiers again using Steps 1-3 above. We

use the alternate domain data for testing.

For each experiment type and classifier type, We have four sets of experiments:

1. Using String-to-word unsupervised filter with alphabetic tokenizer (pre alpha)

2. Using String-to-word unsupervised filter with alphabetic tokenizer followed by attribute

selection (pre alpha with attribute selection)

3. Using String-to-word unsupervised filter with word tokenizer (pre word)

4. Using String-to-word unsupervised filter with word tokenizer followed by attribute

selection (pre word with attribute selection)

61

We use the following settings with String-to-word unsupervised filter:

• IDFTransform: True

• TFTransform: True

• attributeIndices: first-last

• doNotOperateOnFirstClassBasis: False

• invertSelection: False

• lowerCaseTokens: False

• minTermFrequency: 10

• normalizeDocLength: No Normalization

• outputWordCounts: True

• periodicPruning: -1.0

• stemmer: NullStemmer

• stopwords: weka-3-6-10

• useStoplist: False

• wordsToKeep: 1000

For attribute selection, We use:

• evaluator: InfoGainAttributeEval and

• search: Ranker with threshold 0.0

In each experiment set, We collect experiment results on these classifiers:

62

1. Naive Bayes

2. Naive Bayes Multinomial

3. J48

4. Random Forest with:

• 10 trees

• 100 trees

5. IBk (Instance-based k), the K-nearest neighbours classifier with:

• K=1 and using Euclidean distance

• K=10 and using Euclidean distance

• K=1 and using Manhattan distance

• K=10 and using Manhattan distance

6. SMO (Support vector classifier)

We observe that linguistically informed classifiers (Ling.) using String-to-word unsuper-

vised filter with alphabetic tokenizer followed by attribute selection (pre alpha with attribute selection)

generally give the best in-domain and cross-domain results. We use the classifiers to deter-

mine politeness in some blogs. We’ve used the blog entries from the blogs described in Table

4.2.

4.4 Experimental Results

This section describes the results for the experiments. The percentage figures in the tables

for In-domain and Cross-domain experiments denote the percentage of correctly classified

instances.

63

Table 4.2. Blogs used in testing.

Blog no. url Description

blog 1 http://blogs.wsj.com/peggynoonan/ A Wall Street Journal Columnist
blog 2 http://www.thefashionpolice.net/ A blog about shopping and style
blog 3 http://www.rogerebert.com/reviews/tyler-

perrys-a-madea-christmas-2013
A blog for Movie reviews

blog 4 http://www.thedailybeast.com/ A blog dedicated to breaking news and
sharp commentary

blog 5 http://www.blogcatalog.com/blogs/haters-
be-hatin

A satirical humour blog

blog 6 http://www.tmz.com/ A celebrity news blog
blog 7 http://www.samizdata.net/ An individualistic perspective blog
blog 8 http://waiterrant.net/ A waiter’s rant blog
blog 9 http://www.hecklerspray.com/ A gossip and reviews blog
blog 10 http://wow.joystiq.com/ A gaming blog

4.4.1 In-domain Experiments

Four sets of experiments are done for in-domain analysis using a 5-fold cross-validation.

The correctly classified instances (by %) for In-domain analysis on Wikipedia requests

using Bag of Words classifiers are shown in Table 4.3.

The correctly classified instances (by %) for In-domain analysis on Wikipedia requests

using Linguistic classifiers are shown in Table 4.4.

The correctly classified instances (by %) for In-domain analysis on Stack Exchange re-

quests using Bag of Words classifiers are shown in Table 4.5.

The correctly classified instances (by %) for In-domain analysis on Stack Exchange re-

quests using Linguistic classifiers are shown in Table 4.6.

4.4.2 Cross-domain Experiments

Four sets of experiments are done for cross-domain analysis using a 5-fold cross-validation.

64

Table 4.3. In-domain analysis on Wikipedia requests using Bag of Words classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 74.5864% 74.4945% 77.2518% 77.068%
Naive Bayes
Multinomial

78.9063% 79.6415% 80.5147% 80.1471%

J48 70.864% 71.2776% 73.7132% 74.3107%
Random For-
est (10 trees)

74.5404% 73.6673% 76.7004% 76.6085%

Random
Forest (100
trees)

80.7445% 80.193% 80.3309% 79.8254%

iBK (k=1, us-
ing Euclidean
Distance)

64.8897% 64.1544% 71.2316% 70.6342%

iBK (k=10,
using Eu-
clidean Dis-
tance)

59.1912% 58.9154% 76.7463% 76.7923%

iBK (k=1, us-
ing Manhat-
tan Distance)

63.2813% 63.1434% 71.2316% 69.1636%

iBK (k=1, us-
ing Manhat-
tan Distance)

56.4338% 56.1581% 74.6783% 73.4835%

SMO 80.193% 79.8713% 82.307% 82.2151%

The correctly classified instances (by %) for Cross-domain analysis with Wikipedia re-

quests for training and Stack Exchange requests for testing and using Bag of Words classifiers

are shown in Table 4.7.

The correctly classified instances (by %) for Cross-domain analysis with Wikipedia re-

quests for training and Stack Exchange requests for testing and using Linguistic classifiers

are shown in Table 4.8.

65

Table 4.4. In-domain analysis on Wikipedia requests using Linguistic classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 74.4485% 74.7702% 77.0221% 76.3327%
Naive Bayes
Multinomial

80.7904% 80.239% 80.4688% 80.3309%

J48 72.7022% 72.4265% 75% 73.3456%
Random For-
est (10 trees)

72.932% 74.7702% 76.7004% 77.4357%

Random
Forest (100
trees)

79.9173% 80.6066% 80.1011% 80.4228%

iBK (k=1, us-
ing Euclidean
Distance)

64.6599% 64.8438% 71.4614% 71.829%

iBK (k=10,
using Eu-
clidean Dis-
tance)

60.2022% 59.6967% 76.5165% 76.7923%

iBK (k=1, us-
ing Manhat-
tan Distance)

64.6599% 64.8897% 70.5423% 70.5423%

iBK (k=1, us-
ing Manhat-
tan Distance)

59.4669% 59.5129% 74.6783% 74.9081%

SMO 81.3879% 80.3768% 82.2151% 81.0202%

The correctly classified instances (by %) for Cross-domain analysis with Stack Exchange

requests for training and Wikipedia requests for testing and using Bag of Words classifiers

are shown in Table 4.9.

The correctly classified instances (by %) for Cross-domain analysis with Stack Exchange

requests for training and Wikipedia requests for testing and using Linguistic classifiers are

shown in Table 4.10.

66

Table 4.5. In-domain analysis on Stack Exchange requests using Bag of Words classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 68.4% 67.7% 71.8% 71.2%
Naive Bayes
Multinomial

71.8% 71.55% 72.35% 71.4%

J48 67.15% 65.9% 69.05% 69.75%
Random For-
est (10 trees)

69.5% 68.75% 70.15% 69.95%

Random
Forest (100
trees)

73.6% 73.45% 72.35% 72.45%

iBK (k=1, us-
ing Euclidean
Distance)

57.7% 58.85% 65.75% 65.6%

iBK (k=10,
using Eu-
clidean Dis-
tance)

53.2% 53.15% 66.95% 66.35%

iBK (k=1, us-
ing Manhat-
tan Distance)

56.9% 56.85% 65.9% 63.55%

iBK (k=1, us-
ing Manhat-
tan Distance)

51.35% 51.95% 64.6% 63.1%

SMO 74.55% 73.5% 74.8% 75.05%

4.4.3 Experiments on web logs

We now use some of the best classifiers We observed in the previous experiments to determine

the politeness for blog entries of some popular blogs. The sources for these blogs are discussed

in the ‘Experiments’ section in Table 4.2. For each experiment, We show the probability

that the classifier assigns to the blog entries of being ‘polite’.

The web-logs are not as ideal as requests for characterizing politeness as requests involve

an imposition on the addressee, making them optimal for exploring politeness. However,

67

Table 4.6. In-domain analysis on Stack Exchange requests using Linguistic classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 68.45% 68.55% 72.4% 72.4%
Naive Bayes
Multinomial

72.85% 72.7% 74.6% 74.4%

J48 67.7% 67.25% 71.1% 69.65%
Random For-
est (10 trees)

69.15% 67.35% 71.6% 70.25%

Random
Forest (100
trees)

74.2% 74.15% 73.35% 72.75%

iBK (k=1, us-
ing Euclidean
Distance)

58.4% 59.2% 64.9% 63.5%

iBK (k=10,
using Eu-
clidean Dis-
tance)

55.25% 57.65% 71.2% 71.15%

iBK (k=1, us-
ing Manhat-
tan Distance)

58.3% 58.6% 63.8% 63.15%

iBK (k=1, us-
ing Manhat-
tan Distance)

53.55% 54.45% 68.8% 67.85%

SMO 72.95% 73.95% 75% 75.95%

some of the politeness strategies used by Danescu-Niculescu-Mizil et al. (Table 4.1) like

Greeting, Deference, Hedges, can be applied to blogs too. We use this subset of relevant

features for constructing linguistic classifiers for this task. Although the politeness corpus

provided by (Danescu-Niculescu-Mizil et al., 2013) characterize the politeness of requests,

this is the largest training data that We could find for characterizing politeness, therefore

we used this data for this task.

The classification results for blog 1 - blog 5 using Wikipedia requests for training are

shown in Table 4.11. For this, we use linguistic classifiers (Ling.) applying String-to-word

68

Table 4.7. Cross-domain analysis with Wikipedia requests for training and Stack Exchange
requests for testing and using Bag of Words classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 63.1% 62.7% 65.35% 64.85%
Naive Bayes
Multinomial

66.45% 66% 66.55% 66.5%

J48 62.55% 61.6% 60.4% 61.1%
Random For-
est (10 trees)

64.85% 64.95% 64.05% 64.35%

Random
Forest (100
trees)

66.2% 66.25% 64.65% 64.65%

iBK (k=1, us-
ing Euclidean
Distance)

55.05% 55% 62.6% 63.25%

iBK (k=10,
using Eu-
clidean Dis-
tance)

50.45% 50.25% 61.15% 61.35%

iBK (k=1, us-
ing Manhat-
tan Distance)

54.7% 54.3% 61.05% 60.55%

iBK (k=1, us-
ing Manhat-
tan Distance)

50.5% 50.35% 58.35% 58.75%

SMO 64.65% 65.55% 65.35% 64.4%

69

Table 4.8. Cross-domain analysis with Wikipedia requests for training and Stack Exchange
requests for testing and using Linguistic classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 64.4% 64.35% 65.55% 65.55%
Naive Bayes
Multinomial

66.3% 66% 66.3% 66.5%

J48 61.45% 61.2% 61.05% 60.85%
Random For-
est (10 trees)

63.95% 62.3% 65.1% 63.45%

Random
Forest (100
trees)

62.85% 63.65% 64.65% 64.65%

iBK (k=1, us-
ing Euclidean
Distance)

56.75% 56.75% 63.35% 62.5%

iBK (k=10,
using Eu-
clidean Dis-
tance)

51.85% 51.9% 60.4% 60.7%

iBK (k=1, us-
ing Manhat-
tan Distance)

55.15% 55.65% 60.1% 59.6%

iBK (k=1, us-
ing Manhat-
tan Distance)

51.35% 50.95% 58.05% 59.35%

SMO 64.9% 64.95% 65.8% 65.45%

70

Table 4.9. Cross-domain analysis with Stack Exchange requests for training and Wikipedia
requests for testing and using Bag of Words classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 60.9375% 61.1213% 66.0386% 65.3493%
Naive Bayes
Multinomial

68.9338% 68.75% 65.4412% 65.579%

J48 62.1783% 62.546% 64.0625% 64.7518%
Random For-
est (10 trees)

66.9577% 64.568% 66.682% 67.6471%

Random
Forest (100
trees)

70.5423% 68.9338% 68.1985% 68.4743%

iBK (k=1, us-
ing Euclidean
Distance)

57.1691% 57.5827% 62.5919% 62.9596%

iBK (k=10,
using Eu-
clidean Dis-
tance)

53.3088% 52.8952% 66.5441% 66.4522%

iBK (k=1, us-
ing Manhat-
tan Distance)

56.5257% 56.296% 61.2592% 61.6728%

iBK (k=1, us-
ing Manhat-
tan Distance)

52.0221% 52.0221% 64.9816% 64.8897%

SMO 71.0938% 71.3235% 68.704% 68.75%

71

Table 4.10. Cross-domain analysis with Stack Exchange requests for training and Wikipedia
requests for testing and using Linguistic classifiers.

Classifier pre alpha pre word pre alpha with
attribute se-
lection

pre word with
attribute se-
lection

Naive Bayes 60.8915% 60.9835% 65.3952% 64.568%
Naive Bayes
Multinomial

69.761% 69.6691% 68.0147% 68.2904%

J48 62.9136% 60.6618% 65.7169% 65.2114%
Random For-
est (10 trees)

64.0625% 61.9945% 65.3952% 64.0625%

Random
Forest (100
trees)

70.0368% 69.0257% 67.4632% 66.9577%

iBK (k=1, us-
ing Euclidean
Distance)

58.1801% 57.8125% 57.5827% 58.1342%

iBK (k=10,
using Eu-
clidean Dis-
tance)

55.239% 53.3548% 63.1434% 62.8676%

iBK (k=1, us-
ing Manhat-
tan Distance)

58.7776% 57.307% 57.5368% 57.9963%

iBK (k=1, us-
ing Manhat-
tan Distance)

53.7224% 53.171% 64.1544% 64.0165%

SMO 70.9099% 71.6452% 69.761% 69.4393%

72

unsupervised filter with alphabetic tokenizer followed by attribute selection (pre alpha with

attribute selection).

Table 4.11. Classification results using Wikipedia requests for training for
blog 1 - blog 5.

Classifier Blog 1 Blog 2 Blog 3 Blog 4 Blog 5
polite impol. polite impol. polite impol. polite impol. polite impol.

Naive Bayes 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0
Naive Bayes
Multinomial

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

J48 0.0 1.0 0.25 0.75 0.034 0.966 0.25 0.75 0.034 0.966
Random For-
est (10 trees)

0.3 0.7 0.3 0.7 0.4 0.6 0.4 0.6 0.3 0.7

Random For-
est (100 trees)

0.33 0.67 0.46 0.54 0.47 0.53 0.54 0.46 0.42 0.58

iBK (k=1, us-
ing Euclidean
Distance)

0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0

iBK (k=10,
using Eu-
clidean Dis-
tance)

0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.3 0.6 0.4

iBK (k=1,
using Manhat-
tan Distance)

0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

iBK (k=10,
using Manhat-
tan Distance)

0.4 0.6 0.5 0.5 0.5 0.5 0.7 0.3 0.6 0.4

SMO 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

The classification results for blog 1 - blog 5 using Stack Exchange requests for training are

shown in Table 4.12. For this, we again use linguistic classifiers (Ling.) applying String-to-

word unsupervised filter with alphabetic tokenizer followed by attribute selection (pre alpha

with attribute selection).

The classification results for blog 6 - blog 10 using Wikipedia requests for training are

shown in Table 4.13. For this, we use linguistic classifiers (Ling.) applying String-to-word

73

Table 4.12. Classification results using Stack Exchange requests for training for
blog 1 - blog 5.

Classifier Blog 1 Blog 2 Blog 3 Blog 4 Blog 5
polite impol. polite impol. polite impol. polite impol. polite impol.

Naive Bayes 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0
Naive Bayes
Multinomial

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

J48 0.0 1.0 0.0 1.0 0.049 0.951 0.0 1.0 0.049 0.951
Random For-
est (10 trees)

0.8 0.2 0.8 0.2 0.7 0.3 0.6 0.4 0.8 0.2

Random For-
est (100 trees)

0.7 0.3 0.67 0.33 0.49 0.51 0.68 0.32 0.45 0.55

iBK (k=1, us-
ing Euclidean
Distance)

0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

iBK (k=10,
using Eu-
clidean Dis-
tance)

0.7 0.3 0.8 0.2 0.6 0.4 0.4 0.6 0.9 0.1

iBK (k=1,
using Manhat-
tan Distance)

1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0

iBK (k=10,
using Manhat-
tan Distance)

0.7 0.3 0.8 0.2 0.6 0.4 0.6 0.4 0.4 0.6

SMO 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

unsupervised filter with alphabetic tokenizer followed by attribute selection (pre alpha with

attribute selection).

The classification results for blog 6 - blog 10 using Stack Exchange requests for training are

shown in Table 4.14. For this, we again use linguistic classifiers (Ling.) applying String-to-

word unsupervised filter with alphabetic tokenizer followed by attribute selection (pre alpha

with attribute selection).

74

Table 4.13. Classification results using Wikipedia requests for training for blog 6 - blog 10.

Classifier Blog 6 Blog 7 Blog 8 Blog 9 Blog 10
polite impol. polite impol. polite impol. polite impol. polite impol.

Naive Bayes 0.001 0.999 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0
Naive Bayes
Multinomial

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

J48 0.0 1.0 0.667 0.333 0.961 0.039 0.081 0.919 0.667 0.333
Random For-
est (10 trees)

0.5 0.5 0.5 0.5 0.6 0.4 0.4 0.6 0.5 0.5

Random For-
est (100 trees)

0.4 0.6 0.35 0.65 0.53 0.47 0.37 0.63 0.56 0.44

iBK (k=1, us-
ing Euclidean
Distance)

1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

iBK (k=10,
using Eu-
clidean Dis-
tance)

0.3 0.7 0.4 0.6 0.5 0.5 0.0 1.0 0.6 0.4

iBK (k=1,
using Manhat-
tan Distance)

1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0

iBK (k=10,
using Manhat-
tan Distance)

0.3 0.7 0.5 0.5 0.4 0.6 0.4 0.6 0.7 0.3

SMO 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

4.5 Related Work

Politeness is a source of pragmatic enrichment, social meaning, and cultural variation (Danescu-

Niculescu-Mizil et al., 2013). The social-norm view of politeness reflects the historical under-

standing of politeness generally embraced by the public within the English-speaking world.

It assumes that each society has a particular set of social norms consisting of more or less

explicit rules that prescribe a certain behavior, a state of affairs, or a way of thinking in

a context. A positive evaluation (politeness) arises when an action is in congruence with

75

Table 4.14. Classification results using Stack Exchange requests for training for
blog 6 - blog 10.

Classifier Blog 6 Blog 7 Blog 8 Blog 9 Blog 10
polite impol. polite impol. polite impol. polite impol. polite impol.

Naive Bayes 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0
Naive Bayes
Multinomial

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

J48 0.958 0.042 0.0 1.0 0.0 1.0 0.75 0.25 0.0 1.0
Random For-
est (10 trees)

0.7 0.3 0.7 0.3 0.8 0.2 0.5 0.5 0.5 0.5

Random For-
est (100 trees)

0.73 0.27 0.65 0.35 0.73 0.27 0.47 0.53 0.71 0.29

iBK (k=1, us-
ing Euclidean
Distance)

1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0

iBK (k=10,
using Eu-
clidean Dis-
tance)

0.3 0.7 0.2 0.8 0.5 0.5 0.273 0.727 0.5 0.5

iBK (k=1,
using Manhat-
tan Distance)

0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0

iBK (k=10,
using Manhat-
tan Distance)

0.5 0.5 0.3 0.7 0.6 0.4 0.273 0.727 0.4 0.6

SMO 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

the norm, a negative evaluation (impoliteness = rudeness) when action is to the contrary

(Fraser, 1990).

Manuals of etiquette contain aphorisms that reveal quickly this underlying assumption.

The 1872 version of Ladies’ Book of Etiquette and Manual of Politeness ((Hartley, 1872))

offers a variety of rules intended to govern polite discourse.

The conversational-maxim perspective on politeness relies principally on the work of

Grice (1967, published 1975 (Grice, 1975)) in his now-classic paper ‘Logic and conversation’.

76

Grice argued that conversationalists are rational individuals who are, all other things being

equal, primarily interested in the efficient conveying of messages (Fraser, 1990).

By far, the most popular view of politeness is the face-saving view by Brown and Levinson.

The aspects of their theory have have been explored from game-theoretic perspectives and

implemented in language generation systems for interactive narratives, cooking instructions,

translation, spoken dialog and subjectivity analysis, among others.

In recent years, politeness has been studied in web environments. Politeness variations

across different social groups and different media types have been researched. Danescu-

Niculescu-Mizil, Sudhof, Jurafsky, Leskovec and Potts (Danescu-Niculescu-Mizil et al., 2013)

pursue similar goals and construct annotated data orders of magnitude larger for a more

reliable study of politeness strategies. My project uses this annotated data for performing

classifications.

Some researchers have also focused on domain-specific textual cues to study how language

relates to power and status in the context of social networking and workplace discourse .

4.6 Conclusions and Future Work

We train classifiers employing different machine learning algorithms and using unsupervised

and supervised filters and perform experiments in in-domain and cross-domain environments.

We use linguistic features and find an improvement in the performance of the classifiers.

We observe that in general, SMO classifiers tend to give the best performance for text

classifications. The performance of SMO algorithms improve when we apply String-to-word

unsupervised filter with alphabetic tokenizer followed by attribute selection.

For in-domain experiments, in classifiers that don’t use attribute selection, using linguistic

features for training improves the performance by 2-3%. This improvement reduces to 0-1%

when attribute selection is also used while training the classifiers. In almost every case, using

linguistic features registers an improvement in the performance.

77

These classifers perform well in cross-domain settings too. When training on Wikipedia

and tested on Stack Exchange, the best performance is 65.8%. When training on Stack

Exchange and tested on Wikipedia, the best performance is 71.64%. SMO classifiers using

linguistic features show these best results.

We use the better performing classifiers to determine the politeness for blog entries of

some popular blogs. We observe that a majority of classifiers classify Blogs 1, 2, 3, 4, 6, 7,

8 and 10 as polite, and Blogs 5 and 9 as impolite.

In future, we plan to employ AdaBoosting techniques and infer if the performance im-

proves for these experiments. We also plan to use domain adaptation techniques and use

these classifiers to determine politeness in domains other than web-logs.

CHAPTER 5

COMPARATIVE ANALYSIS OF DIFFERENT APPROACHES TO

SENTIMENT ANALYSIS OF TWEETS 1

This chapter develops a variety of techniques to process data from the social network website

Twitter, and generate useful information from it. An application of twitter data processing

is designed in which the tweets for the year 2012 are processed to predict the rating (on a

scale of 0 - 10) of movies released in 2012. An outline of the approaches used for this task is

presented, and the conclusions drawn from the results are described.

5.1 Motivation

Social networks have changed the way we consume media, and interact with it. Widespread

use of the social networks like Facebook, Twitter, Google+, Weibo and RenRen has made

it possible to analyze any subject of popular interest with the data collected from these

networks. Twitter passed the 500 million users mark back in July 2012, and churns out 750

tweets per second from its collective user base (Hermens, 2014). It has become unavoidable

in our current cultural landscape. Unlike the traditional media that does not possess the

proper infrastructure to support interaction with mass society, this microblogging service has

emerged as an active way to discuss things on a massive scale, and it allows to get a sense

of mass sentiment about almost any popular subject. In particular, movies and television

programs are heavily discussed, and commented upon on Twitter. In this article, we describe

an application of how we can mine tweets related to movies to generate useful predictions

about the quality and performance of movies.

1Authors: Shagun Jhaver, Ranjitha Shadakshari and Shweta Menon

78

79

5.2 Introduction

We’ve a collection of more than 350 GB of tweets from the year 2012. We parse these tweets

to look for the tweets related to the movies released in 2012. We then conduct a sentiment

- analysis on these relevant tweets to predict the rating of each movie on a scale of 1 to 10.

As the last step, we compare these ratings with those from popular movie rating databases

like IMDB.

We’ve used a stand-alone hadoop System to test the code. Later, we’ll run the code

on HDFS to be obtained from the lab. The input files contain the tweets in JSON format.

We have 12 .tar files for each month of the year. Each .tar file has .json.bz2 files (zipped)

containing JSON files with tweets information. We use a file ’Movies.txt’ to store the key-

words to be used via DistributedCache. These keywords are the list of movies along with

their IMDB ratings released in 2012. We’ve retrieved this list from IMDB website.

5.3 Filtering Tweets

We use Map Reduce jobs to filter the tweets related to movies released in 2012. Our input

files are in .bz2 format, and Map Reduce works very efficiently for such files. These com-

pressed files are automatically extracted, data is split and sent across the different slave nodes

for processing. The first Map Reduce job parses the tweets using the json-simple library and

cleans the tweets, so that only the tweets which are relevant for further processing are filtered.

The raw tweets data are very noisy. There are a large number of irregular words and

non-English characters. We reduce the feature space by observing that each tweet is as-

sociated with many columns like username, timestamp, location etc., but we only require

the text message for our analysis. All nonEnglish tweets, and irregular character symbols

80

are removed. For example, ?@!#$#%$%$@... MH3G becomes MH3G after filtering. We also

reduce the number of letters that are repeated more than twice in all words. For example

the word looooove becomes love after reduction.

The second Map Reduce job uses the movies obtained from the movies.txt file (sent to

the slave nodes using DistributedCache) to create a HashMap of movie titles. The Mapper

checks whether the input tweet references any of the movie titles in the hashmap. In case

a tweet is related to a movie, the movie name is removed from the tweet, and the output

of the form <Movie, Modified Tweet> is sent to the reducer. Removing movie title from

the tweet ensures that the sentiment analysis for the movie is not disturbed when the movie

title has positive or negative connotations, eg, the Fantastic Mr. Fox.

5.4 Classifying Tweets

We now have a collection of relevant tweets against their corresponding movies. We use three

different approaches to classify each tweet. This section describes each of these approaches

5.4.1 Classifying using list of positive and negative words

Tweets are assigned a positive or negative polarity based on the occurrence of positive or

negative words in the tweet. We have a collection of positive words and negative words list

stored in distributed cache. Each tweet is compared against the list. If a positive word is

detected in the tweet, the corresponding tweet will be given a positive polarity with a value

of 10. Similarly, a negative polarity with a value of 0 will be assigned to tweets containing

any term in the list of negative words.

5.4.2 Using Distant Supervision (Sentiment140 api)

In this approach, we utilize the sentiment140 API (sen, 2014) to classify twitter messages.

Sentiment140 is an open source Application Programming Interface developed by Stanford

81

University, which automatically classifies the sentiment of Twitter messages. It classifies a

given query term as either positive, negative or neutral.

Sentiment140 algorithm uses distant supervision, in which the training data consists of

tweets with emoticons. The emoticons serve as noisy labels. For example, :) in a tweet

indicates that the tweet contains positive sentiment and :(indicates that the tweet contains

negative sentiment. With the help of the Twitter API, it is easy to extract large amounts of

tweets with emoticons in them. Classifiers trained on emoticon data are run against a test

set of tweets.

We use sentiment140 algorithm (Sentiment140 API) to find the sentiment of the tweets

based on polarity obtained in the response file. We generate a bulk request using the json-lib

library, and then send this request to http://www.sentiment140.com/api/bulkClassifyJson.

We parse the response file to collect rating corresponding to each tweet (sen, 2014).

5.4.3 Using customized Mahout Classifier

Classification algorithms can be used to automatically classify documents, images, implement

spam filters and in many other domains. In this case, we used Mahout to classify tweets

using the Naive Bayes Classifier. The algorithm works by using a training set which is a

set of documents already associated to a category. Using this set, the classifier determines

for each word, the probability that it makes a document belong to each of the considered

categories. To compute the probability that a document belongs to a category, it multiplies

together the individual probability of each of its word in this category. The category with

the highest probability is the one the document is most likely to belong to.

We consider two categories - positive and negative. We build a classication model based

on the training set. The new set of tweets are classified using this model as positive or

82

negative category. This classified set of tweets are used in the next stage to obtain the

average rating of the movie.

5.5 Calculating Average rating

In this stage, we have as input <movie title, rating> as a result of the classification described

above. We write a MapReduce code that sends a list of ratings corresponding to each movie

to the reducer. The reducer averages over these ratings to calculate the average rating. This

is concatenated with the standard IMDB rating stored in Distributed cache, and the final

output is of the form:

<Movie-Name | Tweet Based Rating | IMDB Rating>

5.6 Conclusion

Analyzing the results of this project using different test input-sets, we have observed that

out of the 3 approaches for classification, Machine learning technique i.e. Naive Bayes clas-

sification to determine the movie rating is more accurate compared to other 2 approaches.

We should be able to improve the efficiency of this approach by tweaking the classifying

model. We find that the second approach of sending the bulk tweets over the network to

the sentiment140 API is not efficient for standalone systems. The first approach is a basic

approach and can implement efficiently with good algorithm and combines unigrams and

bigrams.

However, we’d like to avoid giving a conclusive verdict on the relative efficiency of these

approaches because we’ve only analyzed small-sized inputs. Using larger data-sets on these

different approaches should help us comment more concretely on the performances of the

three approaches.

83

5.7 Looking Ahead

We’d test each of these approaches on the same, larger data sets to obtain figures describing

their relative efficiencies. Right now, the classifier is being run on the data on a single ma-

chine. We plan to modify this code so that the classifier can work on data on the distributed

file system. We’d also look into whether the classification job should also be distributed on

to the slave nodes. We’d tweak the algorithm building the classifying model, and then run

tests to see which features give the best results. We’d also look into applications other than

movie ratings that we can use these methods for. Besides, we’d consider getting the tweets

indexed using Apache SOLR for efficient processing.

REFERENCES

(2014). Sentiment 140 api. http://help.sentiment140.com/api.

(2014). Wikipedia: C4.5/ algorithm. http://en.wikipedia.org/wiki/C4.5_algorithm.

(2014). Wikipedia: Sequential minimal optimization. http://en.wikipedia.org/wiki/

Sequential_minimal_optimization.

Aggarwal, C. C. (2012). The multi-set stream clustering problem. In SDM, pp. 59–69. SIAM.

Aggarwal, C. C. (2014). The setwise stream classification problem. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 432–441. ACM.

Arslan, A. N. E. O. (1999). An efficient uniform-cost normalized edit distance algorithm.
String Processing and Information Retrieval Symposium and International Workshop on
Groupware, 8,15.

Bar-Yossef, Z. J., T. S. Krauthgamer, and R. Kumar (2004, October). R. In Approximat-
ing edit distance efficiently, 2004. Proceedings. 45th Annual IEEE Symposium on , vol.,
no., pp.550,559,Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on , vol., no., pp.550,559, pp. 17–19. Foundations of Computer Science.

Brown, P. and S. Levinson (1978). Universals in language usage: Politeness phenomena. In
E. Goody (Ed.), Questions and Politeness, pp. 56–289. Cambridge: Cambridge University
Press.

Brown, P. and S. Levinson (1987). Politeness: Some Universals in Language Usage. Cam-
bridge: Cambridge University Press.

Bunke, H. (1997). On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters 18 (8), 689–694.

Chandra, S., L. Khan, and F. B. Muhaya (2011). Estimating twitter user location using
social interactions–a content based approach. In IEEE Third International conference on
Social Computing (SocialCom), pp. 838–843. IEEE.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein: (1990). Introduction to Algo-
rithms. Cambridge, MA: MIT Print.

84

http://help.sentiment140.com/api
http://en.wikipedia.org/wiki/C4.5_algorithm
http://en.wikipedia.org/wiki/Sequential_minimal_optimization
http://en.wikipedia.org/wiki/Sequential_minimal_optimization

85

Danescu-Niculescu-Mizil, C., M. Sudhof, D. Jurafsky, J. Leskovec, and C. Potts (2013). A
computational approach to politeness with application to social factors. ACL.

de la Higuera, C.; Mico, L. (2008, April). A contextual normalised edit distance. Data
Engineering Workshop, 354,361.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier
systems, pp. 1–15. Springer.

Domingos, P. and G. Hulten (2000). Mining high-speed data streams. In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 71–80. ACM.

Dyer, K. P., S. E. Coull, T. Ristenpart, and T. Shrimpton (2012). Peek-a-boo, i still see you:
Why efficient traffic analysis countermeasures fail. In Security and Privacy (SP), 2012
IEEE Symposium on, pp. 332–346. IEEE.

Ekanakake, J., H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. Fox (2010). Twister:
a runtime for iterative mapreduce. In 19th ACM International Symposium on High Per-
formance Distributed. Computing (HPDC.

Fraser, B. (1990). Perspectives on Politeness. Journal of Pragmatics.

Fu, K. S. . (1982). Syntactic Pattern Recognition and Applications. Englewood Cliffs, NJ:
Prentice-Hall.

Fuad, M. M. M.; Marteau, P.-F. (2008, June). The extended edit distance metric. Content-
Based Multimedia Indexing .

Gaber, M. M., A. Zaslavsky, and S. Krishnaswamy (2005). Mining data streams: a review.
ACM Sigmod Record 34 (2), 18–26.

Glymour, C., D. Madigan, D. Pregibon, and P. Smyth (1997). Statistical themes and lessons
for data mining. Data mining and knowledge discovery 1 (1), 11–28.

Goffman, E. (1971). Relations in Public: Microstudies of the Public Order. New York Harper
and Row.

Grice, H. P. (1975). Logic and Conversation.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten (2009). The
weka data mining software: an update. ACM SIGKDD explorations newsletter 11 (1),
10–18.

Hall, P. A. V. and G. R. Dowling (1980, December). Approximate string matching. ACM
Comput Surveys 12, 381–402.

86

Hanada, H., A. Nakamura, and M. Kudo (2011). A practical comparison of edit distance
approximation algorithms. Granular Computing (GrC), 231–236.

Hansen, L. K. and P. Salamon (1990). Neural network ensembles. IEEE transactions on
pattern analysis and machine intelligence 12 (10), 993–1001.

Hartley, F. (1872). The Ladies’ Book of Etiquette: And Manual of Politeness: A Complete
Hand Book for the Use of the Lady in Polite Society: Containing Full Directions for
Correct Manners, Dress, Deportment, and Conversation ... and Also Useful Receipts for
the Complexion, Hair, and with Hints and Directions for the Care of the Wardrobe.

He, Q., C. Du, Q. Wang, F. Zhuang, and Z. Shi (2011). A parallel incremental extreme svm
classifier. Neurocomputing 74 (16), 2532–2540.

Hermens, C. (2014). Tweet-a-new-way.

Jain, S. and A. L. N. Rao (2013, October). A comparative performance analysis of ap-
proximate string matching. International Journal of Innovative Technology and Exploring
Engineering (IJITEE) ISSN: 3, 2278–3075.

Juarez, M., S. Afroz, G. Acar, C. Diaz, and R. Greenstadt (2014). A critical evaluation of
website fingerprinting attacks. In Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS 2014).

Klinkenberg, R. (2003). Concept drift and the importance of examples. In Text mining–
theoretical aspects and applications. Citeseer.

Kolter, J. Z. and M. A. Maloof (2007). Dynamic weighted majority: An ensemble method
for drifting concepts. The Journal of Machine Learning Research 8, 2755–2790.

Lee, L. (1999). Measures of distributional similarity. In Proceedings of the 37th annual
meeting of the Association for Computational Linguistics on Computational Linguistics,
pp. 25–32. Association for Computational Linguistics.

Lee, W. and S. J. Stolfo (1998). Data mining approaches for intrusion detection. In Usenix
Security.

Liberatore, M. and B. N. Levine (2006). Inferring the source of encrypted http connections.
In Proceedings of the 13th ACM conference on Computer and communications security,
pp. 255–263. ACM.

Malewicz, G., M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and C. G. (2010). Pregel:
a system for large-scale graph processing. In International Conference on Management of.
data (SIGMOD.

87

Marzal, A. and E. Vidal (1993). Computation of normalized edit distance and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (9), 926–32.

Masek, W. J. and M. S. Patterson (1980, February). A faster algorithm computing string
edit distances. J. Comput. Syst. Sci. 20, 18–31.

Masud, M. M., Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and B. Thuraisingham
(2010). Addressing concept-evolution in concept-drifting data streams. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on, pp. 929–934. IEEE.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2010). Classification
and novel class detection in data streams with active mining. In Advances in Knowledge
Discovery and Data Mining, pp. 311–324. Springer.

McCallum, A. and K. Nigam (1998),). A comparison of event models for naive Bayes text
classification. AAAI/ICML-98 Workshop on Learning for Text Categorization.

Meier, A. J. (1999). Defining politeness: Universality in appropriateness.

Mitchell, T. (1997). Machine Learning (1 ed.). Science/Engineering/Math; (March 1:
McGraw-Hill.

nlp.stanford.edu (2014).

Parveen, P., P. Desai, B. M. Thuraisingham, and L. Khan: (2013). Mapreduce-guided
scalable compressed dictionary construction for evolving repetitive sequence streams. Col-
laborateCom, 345–352.

Pereira, R., M. Azambuja, K. Breitman, and M. Endler (2010). An architecture for dis-
tributed high performance video processing in the cloud. In 3rd International Conference
on Cloud. computing (Cloud.

Ristad, E. and P. n. Yianilos (1998). Learning string-edit distance. Yianilos IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20 (5), 522–32.

Robles-Kelly, A. and E. Hancock. (2005). Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (3), 365–78.

Sankoff, D. and J. B. Kruskal (1983a). Time Warps, String Edits, and Macro-molecules:
The Theory and Practice of Sequence Comparison. Reading, MA: Addison-Wesley.

Sankoff, D. and J. B. Kruskal (1983b). Time Warps, String Edits, and Macromolecules: the
Theory and Practice of Sequence Comparison. Inc: Addison-Wesley Publishing Company.

Sellers, P. H. (1980). The theory and computation of evolutionary distances: Pattern recog-
nition. J. Algorithms 1, 359–373.

88

Syed, N. A., H. Liu, and K. K. Sung (1999). Handling concept drifts in incremental learning
with support vector machines. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 317–321. ACM.

Syverson, P. F., D. M. Goldschlag, and M. G. Reed (1997). Anonymous connections and
onion routing. In Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on,
pp. 44–54. IEEE.

Vidal, R. (2010). A tutorial on subspace clustering. IEEE Signal Processing Magazine 28 (2),
52–68.

Wagner, R. A. and M. J. Fischer (1974, January). The string-to-string correction problem.
J. Assoc 21 (1), 168–173.

Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining concept-drifting data streams using
ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 226–235. ACM.

Wei, J. (2004, March). Markov edit distance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on , vol 26 (3).

Yan, C., X. Yang, Z. Yu, M. Li, and X. Li. (2012). Incmr: Incremental data processing based
on mapreduce. IEEE CLOUD, page, 534–541.

Yang, Y. P. and T. Pavlidis (1990, November). Optimal correspondence of string subse-
quences. IEEE Trans Patt. Anal. Machine Intell 12 (11), 1080–1087.

VITA

Shagun Jhaver was born in Neemuch, India. After completing his schoolwork at Modi Public

School, Kota in Rajasthan, India, Shagun entered Indian Institute of Technology Bombay

in Mumbai, India in 2006. During the summer of 2009, he worked as a researcher at Insti-

tut national de recherche en informatique et en automatique (INRIA) Paris-Rocquencourt,

France. He received a Bachelor of Technology with a major in Electrical Engineering from

Indian Institute of Technology Bombay in May 2010. During the following two years, he was

employed as a software developer at Future Group in Mumbai, India. In August, 2012, he

entered the Graduate School at The University of Texas at Dallas.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Setwise Stream Classification
	Edit Distance calculation
	Politness Classifiers
	Sentiment Analysis of Twitter Messages

	A Framework for Ensemble based Setwise Stream Classification
	Introduction
	Related Work
	Setwise Stream Classification
	Stream
	Vector Representation
	Ensemble Model

	Evaluation
	Datasets
	Experiments and Results

	Discussion
	Conclusion

	Calculating Edit Distance for Large Sets of String Pairs using MapReduce
	Introduction
	Background
	Related Work
	Proposed Approach
	Experimental Setup and Results
	Conclusions and Future Work

	Comparative analysis of classifiers predicting politeness and application in web-logs
	Introduction
	Background
	Experiments
	Experimental Results
	In-domain Experiments
	Cross-domain Experiments
	Experiments on web logs

	Related Work
	Conclusions and Future Work

	Comparative Analysis of Different Approaches to Sentiment Analysis of Tweets
	Motivation
	Introduction
	Filtering Tweets
	Classifying Tweets
	Classifying using list of positive and negative words
	Using Distant Supervision (Sentiment140 api)
	Using customized Mahout Classifier

	Calculating Average rating
	Conclusion
	Looking Ahead

	References
	Vita
	Blank Page

