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Abstract—Given two strings X and Y over a finite alphabet,
the edit distance between X and Y, d(X,Y) is the number of
elementary edit operations required to edit X into Y. A dynamic
programming algorithm elegantly computes this distance. In
this paper, we investigate the parallelization of calculating edit
distance for a large set of strings using MapReduce, a popu-
lar parallel computing framework. We propose SIM_MR and
PRE_MR algorithms, parallel versions of the dynamic program-
ming solution, and present implementations of these algorithms.
We study different cases by varying algorithm parameters,
input size and number of parallel nodes, and analytically and
experimentally confirm the superiority of our methods over the
usual dynamic programming approach. This study demonstrates
how MapReduce parallelization opens new avenues of designing
for dynamic programming algorithms.

Index Terms - Edit distance, Levenshtein distance, MapRe-
duce, string manipulation, dynamic programming

I. INTRODUCTION

Given two strings s and ¢, the minimum number of edit
operations required to transform s into t is called the edit
distance. The edit operations commonly allowed for computing
edit distance are: (i) insert a character into a string; (ii) delete
a character from a string and (iii) replace a character of a
string by another character. For these operations, edit distance
is sometimes called Levenshtein distance [1]. For example, the
edit distance between ‘tea’ and ‘pet’ is 2.

There are a number of algorithms that compute edit
distances [2], [3], [4] and solve other related problems [5],
[6], [7]. Edit distance has placed an important role in a
variety of applications due to its computational efficiency
and representational efficacy. It can be used in approximate
string matching, optical character recognition, error correcting,
pattern recognition [8], redisplay algorithms for video editors,
signal processing, speech recognition, analysis of bird songs
and comparing genetic sequences [9]. Sankoff and Kruskal
provide a comprehensive compilation of papers on the problem
of calculating edit distance [12].

The cost of computing edit distance between any two
strings is roughly proportional to the product of the two string
lengths. This makes the task of computing the edit distance for
a large set of strings difficult. It is computationally heavy and
requires managing large data sets, thereby calling for a parallel
processing implementation. MapReduce, a general-purpose
programming model for processing huge amounts of data with
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a parallel, distributed algorithm appears to be particularly well
adapted to this task. This paper reports on the application of
MapReduce, using its open source implementation Hadoop to
develop a computational procedure for efficiently calculating
edit distance.

The edit distance is usually computed by an elegant dy-
namic programming procedure [1]. Although, like the divide-
and-conquer method, dynamic programming solves problems
by combining the solutions to subproblems, it applies when
the subproblems overlap - that is, when subproblems share
subsubproblems [11]. Each subsubproblem is solved just once,
and then the answer is saved, thereby avoiding the work of
recomputing the answer every time it solves each subproblem.
Unlike divide-and-conquer algorithms, dynamic programming
procedures do not partition the problem into disjoint subprob-
lems, therefore edit distance calculation does not lend itself
naturally to parallel implementation. This paper develops an
algorithm for calculating the edit distance for MapReduce
framework and demonstrates the improvement in performance
over the usual dynamic programming algorithm used in paral-
lel.

We implement the dynamic programming approach for
this problem in a top-down way with memoization [11]. In
this approach, we write the procedure recursively in a natural
manner, but modified to save the result of each subproblem
in an associative array. The procedure now first checks to
see whether it has previously solved this subproblem. If so,
it returns the saved value, saving further computation at this
level; if not, the procedure computes the value in the usual
manner [11]. Finding edit distance of a pair of strings (s, t)
entails finding the edit distance of every pair (s, t'), where s’
and ¢’ are substrings of s and ¢ respectively. All these distances
are saved in an associative array h. Subsequently, if any new
pair of strings share a pair of substrings for which the distance
is already stored in h, the saved values are used, thereby saving
the computation time. Pairs of strings that are likely to share
common substrings are processed together, thus improving the
performance over the standard dynamic programming parallel
application for this problem.

The contributions of this work are as follows. First, to the
best of our knowledge, this is the first work that addresses the
calculation of unnormalized edit distance for a large number
of string pairs in a parallel implementation. Our implementa-
tion in MapReduce improves upon the performance of usual
dynamic programming implementation on a single machine.



Second, our proposed approach, which uses an algorithm
tailored to the MapReduce framework architecture performs
better than the simple parallel implementation. Finally, this
serves as an example of using the MapReduce framework for
dynamic programming solutions, and paves the way for paral-
lel implementation for other dynamic programming problems.

In particular, the requirement for calculating edit distance
for a large number of pairs of strings emerged in one of our
previous research projects [36] on finding normative patterns
over dynamic data streams. This project uses an unsupervised
sequence learning approach to generate a dictionary which
will contain any combination of possible normative patterns
existing in the gathered data stream. A technique called
compression method (CM) is used to keep only the longest
and most frequent unique patterns according to their associated
weight and length, while discarding other subsumed patterns.
Here, edit distance is required to find the longest patterns.

The remainder of this paper is organized as follows. Section
IT discusses the problem statement and the dynamic program-
ming solution to the problem on a single machine. Section
IIT discusses our proposed approach, and the techniques used
in detail. Section IV reports on the experimental setup and
results. Section V then describes the related work, and Section
VI concludes with directions to future work.

II. BACKGROUND

The edit distance problem is to determine the smallest
number of edit operations required for editing a source string
of characters into a destination string. For any two strings s =
$182....8m and t = tyto...t, over an input alphabet of symbols
o = {a1, a9, ...a,}, the valid operations to transform s into ¢
are:

e Insert a character ¢; appearing in string ¢
e Delete a character s; appearing in string s

e Replace a character s; appearing in string s by a
character ¢; in string ¢

For strings s = s183....8y, and t = t1ts...t,, and an asso-
ciative array h storing the edit distance between s and ¢, this
problem can be solved sequentially in O(mn) time. The mem-
oized dynamic programming algorithm for this, MEM_ED, is
described in Algorithm 1:

For an input pair of strings (s,t), step 1 in MEM_ED
algorithm checks whether the pair is already stored in the
input associative array h. If present, the algorithm returns the
stored value for (s,t) in step 2. If one of the strings is empty,
MEM_ED returns the length of the other string as the output.
Steps 10-11 in this algorithm divide the problem inputs into
subproblem inputs of smaller size. Steps 12 - 14 calculate the
edit distance recursively for these subproblems. Step 20 derives
the edit distance for the problem, and step 21 stores this result
in an associative array, h for further use, thereby memoizing
the recursive procedure.

Fig. 1 shows the associative array entries for calculating the
edit distance between two strings - ‘levenshtein’ and ‘meilen-
stein’. For example, for calculating the edit distance between
the string pair (‘levens’, ‘meilens’), the edit distances k,, kp

Algorithm 1 EDIT-DISTANCE(s[1, 2,..m], t[1,2, ...
(MEM_ED)
1. if pair(s, t) in h then
2 return h[pair(s, t)]
3: end if
4: if len(s)==0 then
5: return ¢.length
6
7
8

,n], h):

. end if
. if len(¢)==0 then
: return s.length
9: end if
10: 8"« s[1,2,..m — 1]
1n: ¢+ t[1,2,..n — 1]
12: ko < EDIT-DISTANCE(s, t')
13: ky + EDIT-DISTANCE(s', ) + 1
14: k. < EDIT-DISTANCE(s, ') + 1
15: if si[m]==t[n] then
16: kg < kg
17: else
18: kg<+ kg +1
19: end if
20: ¢ « man(ky, ke, kq)
21: h[pair(s, t)] < ¢
22: return c

and k. for the pairs (‘leven’, ‘meilen’), (‘levens’, ‘meilen’)
and (‘leven’, ‘meilens’) are considered respectively. By a
recursive procedure in steps 12-14 of MEM_ED, these values
are calculated to be 3, 4 and 4 respectively. Since the input
string pair (‘levens’, ‘meilens’) have the same last character
‘s’, the value kg4 is calculated to be equal to k, = 3 in steps
15-19 of MEM_ED. Step 20 computes ¢, the minimum of k,
k. and kg to be 3. Step 21 associates string pair (‘levens’,
‘meilens’) with value 3 in the associative array h for further
use. Step 22 returns this edit distance value.

.

—
o]
——
——

—_
L]

D o— T3 TS D == D
oo oo | —a o |lom | e ko | —= | =
o |oo |||l | oo ko | — | — | =

o | | T T e | s | — [P | P [ T

G | [0 [ T [T | P s e e | | e | —
Q[ | DD | e T [T | P e | e | e [ | P [ —
Lol Fe ol EoST R ) Kol 0y [ GRECY EXT I S (EAC N B Ny I I (e ]
Lol o [ S (e B (0 Y 0 S R ) P N (N O S (b [ o )
Lo T R S N o ) [y ) (O T oS (e [ (ol Y ey Y e [ S ]
bt I - T (ol [ (O iV Wy o I [ o N e el I o N
LT ey [ (oS (e I B I 0 ) o [ 0N [ES I I Y e o o g )
CI | I o [ O O | ] e D | O |

Eiy Pyl el Bt ) Est i R ) Bl Facol Roa ) K4 e

—_—
— |
=
pa— ]

p—

——
——
——
o

Fig. 1: Edit Distance between two strings



On a single machine, we compute the edit distance for
every pair of distinct strings in an input text document by re-
peatedly using MEM_ED for each pair of distinct strings. The
SIN_ED procedure in Algorithm 2 describes this approach.

Algorithm 2 Single Machine Implementation for calculating
Edit Distance for all string pairs (SIN_ED)

. dist_strings < list of distinct strings in doc d
: for all string pairs (s, t) € dist_strings do
H <+ new ASSOCIATIVE_ARRAY
¢ < EDIT_DISTANCECs, t, H)
EMIT(pair(s, t), ¢)
end for

SN

Step 1 in SIN_ED algorithm collects all the distinct strings
in the input document. Step 3 initializes an associative array.
Step 4 uses the EDIT_DISTANCE procedure of MEM_ED to
calculate the edit distance for each distinct string pair. The
implementation of SIN_ED takes O(t?n?) time for ¢ distinct
strings and string length of order n. This is computationally
very expensive; hence we need to implement this algorithm in
parallel for faster computations.

III. RELATED WORK

Extensive studies have been done on edit distance calcula-
tions and related problems over the past several years. Ristad
and Yianilos [15] provide a stochastic model for learning
string edit distance. This model allows for learning a string
edit distance function from a corpus of examples. Bar-yossef,
Jayram, Krauthgamer and Kumar develop algorithms that solve
gap versions of the edit distance problem [16]: given two
strings of length n with the promise that their edit distance
is either at most k or greater than [, these algorithms decide
which of the two holds.

A lot of studies have been dedicated to normalized edit dis-
tance to effect a more reasonable distance measure. Abdullah
N. Arslan and Omer Egecioglu discuss a model for computing
the similarity of two strings X and Y of lengths m and n
respectively where X is transformed into Y through a sequence
of three types of edit operations: insertion, deletion, and
substitution. The model assumes a given cost function which
assigns a non-negative real weight to each edit operation. The
amortized weight for a given edit sequence is the ratio of its
weight to its length, and the minimum of this ratio over all
edit sequences is the normalized edit distance. Arslan and
Egecioglu [18] give an O(mn logn)-time algorithm for the
problem of normalized edit distance computation when the cost
function is uniform, i.e, the weight of each edit operation is
constant within the same type, except substitutions which can
have different weights depending on whether they are matching
or non-matching.

Jie Wei proposes a new edit distance called Markov edit
distance [17] within the dynamic programming framework,
that takes full advantage of the local statistical dependencies
in the string/pattern in order to arrive at enhanced matching
performance. Higuera and Micé define a new contextual nor-
malized distance, where each edit operation is divided by the
length of the string on which the edit operation takes place.
They prove that this contextual edit distance is a metric and

that it can be computed through an extension of the usual
dynamic programming algorithm for the edit distance [20].

Fuad and Marteau propose an extension to the edit dis-
tance to improve the effectiveness of similarity search [19].
They test this proposed distance on time series data bases in
classification task experiments and prove, mathematically, that
this new distance is a metric.

Robles-Kelly and Hancock compute graph edit distance
by converting graphs to string sequences, and using string
matching techniques on them [24]. They demonstrate the utility
of the edit distance on a number of graph clustering problems.
Bunke introduces a particular cost function for graph edit
distance and shows that under this cost function, graph edit
distance computation is equivalent to the maximum common
subgraph problem [21].

Hanada, Nakamura and Kudo discuss the issue of high
computational cost of calculating edit distance of a large set
of strings [22]. They contend that a potential solution for
this problem is to approximate the edit distance with low
computational cost. They list the edit distance approximation
methods, and use the results of experiments implementing
these methods to compare them. Jain and Rao present a com-
parative study to evaluate experimental results for approximate
string matching algorithms such as Knuth-Morris-Pratt, Boyer-
Moore and Raita on the basis of edit distance [23].

A few studies have also been done that target a parallel
implementation of calculating normalized edit distance. In-
stead, in this work, we address the calculation of unnormalized
edit distance for large number of string pairs in a parallel
implementation, and we use MapReduce for it.

IV. PROPOSED APPROACH

We discussed in the Background section that the single
machine implementation for calculating the edit distance of
all distinct pairs of strings, described in SIN_ED, is computa-
tionally expensive. We propose a parallel computing approach
to do this more efficiently.

MapReduce is emerging as an important programming
model for expressing distributed computations in data-intensive
applications [30]. It was originally proposed by Google and
is built on well-known principles in parallel and distributed
processing dating back several decades. MapReduce has since
enjoyed widespread adoption via Hadoop, a popular open-
source implementation developed primarily by Yahoo and
Apache. It enables easy development of scalable approaches to
efficiently processing massive amounts of data on clusters of
commodity machines. MapReduce systems are evolving and
extending rapidly and today, Hadoop is a core part of the
computing infrastructure for many web companies, such as
Facebook, Amazon, Yahoo and Linkedin. Because of its high
efficiency, high scalability, and high reliability, MapReduce
framework is used in many fields [30], such as life science
computing [32], text processing, web searching, graph pro-
cessing [34], relational data processing, data mining, machine
learning [35] and video analysis [33].

We use the MapReduce framework for the parallel im-
plementation of calculating edit distance for a large set of
strings. The idea is to use the associative array in SIN_ED



to store the edit distances across the computations for many
pairs of strings. Once the edit distance for a pair of strings (s, t)
is calculated, the edit distance for all pairs (s’,t'), where s
and t' are substrings of s and ¢ respectively are stored in the
associative array. Subsequent to this, for a new pair of strings
(a, b), the calculations at steps 12, 13 and/or 14 in MEM_ED
can be saved, if the input pairs of strings for these steps already
have an entry in the associative array.

The SIM_MR algorithm (Algorithm 3) describes a simple
Map Reduce approach to calculating edit distance in parallel
using these ideas.

Algorithm 3 Simple MapReduce approach to calculating Edit
Distance for all string pairs (SIM_MR)

1: class MAPPER

2 method MAP(docid a, doc d)

3 dist_strings < list of distinct strings in doc d
4 count < 0

5: for all string pairs (s, t) € dist_strings do

6.

7

8

9

count < count + 1
reducer_index < count % num_reducers
EMIT(reducer_index, pair(s, t))
end for
10:
11: class REDUCER
12: method REDUCE(reducer_index, pairs [(s1, t1), (s2,

t2),...])

13: H < new ASSOCIATIVE_ARRAY

14: for all string pairs (s, t) € pairs [(s1, t1), (S2, t2),...]
do

15: ¢ < EDIT_DISTANCEC(s, t, H)

16: EMIT(pair(s, t), ¢)

17: end for

SIM_MR first constructs a list of distinct strings from the
input document in Step 3 in the Mapper phase. The ‘count’
variable initialized in Step 4 tracks the count of the string pair
being processed. The ‘num_reducers’ parameter determines
the number of reducers to be used in the reduce phase of
the procedure. The ‘reducer_index’ variable determines the
reducer that would process the current string pair. The value
of ‘reducer_index’ is calculated in Step 7. This value is
independent of the strings in the string pair being processed.
Step 8 emits with ‘reducer_index’ as the key and the current
string pair as the value.

In the reduce phase, an associative array, H is initialized
in Step 13. For every input string pair, Step 15 calculates
the edit distance of the current string pair using H with the
EDIT_DISTANCE procedure of MEM_ED. The entries stored
in H during the edit distance calculations of any string pair
can be used across calculations for different string pairs. Step
16 emits the string pair with its corresponding edit distance
value.

We note that the reducer_index value in SIM_MR de-
pends just on the count of the string pair being processed. We
propose a modified algorithm that uses the strings in the string
pair to effect a more efficient way of determining the reducer
where the current string pair gets processed.

The pairs of strings to be processed at a single node need

to be chosen such that they are likely to have some pairs
of substrings for which the edit distance has already been
computed, and the computation time is saved via an associative
array look-up. To accomplish this, we collect all pairs of strings
with a common prefix pair at a single reducer node. This prefix
pair is constructed by taking the first pre fix_length characters
of both strings to form a string pair. The procedure for the
proposed approach, PRE_MR, is described in Algorithm 4.

Algorithm 4 Prefixed MapReduce approach to calculating Edit
Distance for all string pairs (PRE_MR)

1: class MAPPER

2 method MAP(docid a, doc d)

3 dist_strings < list of distinct strings in doc d

4 for all string pairs (s, t) € dist_strings do

5: s_prefix < s[l: prefiz_length)

6: t_prefiz < t[1: prefiz_length)

7 EMIT(pair(s_prefiz, t_prefix), pair(s, t))

8 end for

9:

10: class REDUCER

11: method REDUCE(prefix_pair (s', t'), pairs [(s1, t1),
(s2, t2),...])

12: H <+ new ASSOCIATIVE_ARRAY

13: for all string pairs (s, t) € pairs [(s1, t1), (S2, t2),...]
do

14: ¢ + EDIT_DISTANCE(, t, H)

15: EMIT (pair(s, t), c)

16: end for

For the current string pair (s, t), Steps 5 and 6 in PRE_MR
calculate the s_prefiz and t_prefiz values by taking the
first prefiz_length characters from s and t respectively.
For example, for prefix_length = 2, and string pair (s, )
= (‘mango’, ‘gate’), the s_prefixz and t_prefixz values are
computed to be ‘ma’ and ‘ga’ respectively. Step 7 emits with
the string pair (s_prefiz, t_prefix) as the key, and the string
pair (s, t) as the value.

The reduce phase for PRE_MR is similar to the reduce
phase in the SIM_MR procedure. An associative array H is
initialized in step 12, and the edit distance of every string
pair in pairs [(s1, 1), (s2, t2),...] is computed using the
EDIT_DISTANCE procedure of MEM_ED. Step 15 emits the
results.

Hadoop runs its map and reduce processes in such a way
that these processes operate on independent chunks of data and
have no inter process communication. We’ve customized our
algorithms to satisfy this constraint. For PRE_MR, the mapper
sends all string pairs sharing the same pair of prefixes to a
single reducer. In the reduce stage, all these string pairs are
processed together. For each string pair, the associative array
H saves the calculated intermediate edit distances, and a look-
up in this array often saves the computations for many other
pairs of strings that are input to this reducer. These savings in
computations make our algorithms, especially PRE_MR more
efficient than the SIN_ED approach.

Fig. 2 shows an example of the implementation for
PRE_MR algorithm with ‘prefix_length’ = 2. Mapper con-
structs a prefix pair (‘ma’, ‘la’) for input pair of strings
(‘mad’, ‘laughter’), and emit with (‘ma’, ‘la’) as the key and



Distinct string pairs

Distinct string pairs

[(‘'mad’, ‘laughter’)| (‘'madness’, ‘laugh’]

reduce

J

((‘'mad’, ‘laughter’), 7)
((‘'madness’, ‘laugh’), 6)

ma ma
Data store 1 P Data store n P
((ma’, 1a), ((Cun’, tan), ((ma’, la’), (Cun’, ‘@),
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[(funderstand’, ‘all’), |(‘'under’, ‘tallest’]
Y

reduce

J

((‘understand’, ‘tall’), 8)
((‘under’, ‘tallest’), 6))

Fig. 2: PRE_MR algorithm flow-chart

(‘mad’, ‘laughter’) as the value. In the reduce phase, all strings
pairs sharing the prefix (‘ma’, ‘la’) are processed together.
Therefore, the string pairs (‘mad’, ‘laughter’) and (‘madness’,
‘laugh’) are processed at the same node. Since these string
pairs share common substrings, many computations are saved,
and the procedure is faster.

V. EXPERIMENTAL SETUP AND RESULTS

Our hadoop cluster (cshadoop0O-cshadoop9) has ten virtual
machines that run in the Computer Science vmware esx cloud.
Each of these VM’s has 4 GB of RAM and a 256 GB virtual
hard drive. These VM’s are spread across three ESX hosts to
balance the load. We’ve used one name node and nine slave
nodes. For our implementation, we used Hadoop version 1.0.4
and JAVA JDK version 1.6.0.37.

The data sets were created from the ebooks for
which the copyright has expired. We used the text
of ‘Pride and Prejudice’ by Jane Austen available at
http://www.gutenberg.org/ebooks/1342, and developed files of
size 10kB, 20kB,..., 100kB from it.

We implemented a preprocessing step for each of the
experiments, where all the duplicate strings in the input files

were eliminated, thus all the experiments described have been
conducted on unique strings.

We processed each of these files using SIN_ED, SIM_MR
and PRE_MR algorithms. The results are described in Table
I and Fig. 3. It shows the comparison of the performance of
neutral baseline of SIN_ED implementation (plain sequential
implementation) with our proposed algorithms. For Fig. 3,
we’ve taken the input file sizes (in kB) on the x-axis and the
times taken by each of the procedures (in seconds) on the
y-axis. These results are obtained using 4 reducer nodes.

TABLE I: SIN_ED vs. SIM_MR vs. PRE_MR implementation

[ File Size | SIN.ED | SIM_MR | PRE_MR |

10 kB 12 sec 72 sec 68 sec
20 kB 33 sec 73 sec 70 sec
30 kB 62 sec 82 sec 71 sec
40 kB 90 sec 94 sec 76 sec
50 kB 122 sec 147 sec 79 sec
60 kB 155 sec 120 sec 80 sec
70 kB 189 sec 125 sec 85 sec
80 kB 218 sec 140 sec 88 sec
90 kB 276 sec 145 sec 93 sec
100 kB 293 sec 209 sec 101 sec
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Fig. 3: SIN_ED vs. SIM_MR vs. PRE_MR implementation

Table I results indicate that PRE_MR algorithm gives the
best results. For example, for a file of size 80 kB, SIN_ED
takes 218 sec, SIM_MR takes 140 sec and PRE_MR algorithm
takes 88 sec. Therefore, we conduct the rest of the experiments
only for PRE_MR.

We experimented with different values of the parameter
‘prefiz_length’ used in the MAP phase for the PRE_MR
implementation. The time taken for different file sizes are
documented in Table II, and Fig. 4. For Fig. 4, the x-axis is
file size (in kB), and the y-axis is the runtime for experiments
with different ‘prefix_length’ values. For this experiment,
we chose to use 2 mappers and 1 reducer in each case. We
see that, generally, smaller ‘prefix_length’ values tend to
give better performance. For example, for a file of size 80 kB,
‘prefixz_length’ = 1 case takes 100 sec, ‘prefiz_length’ =
2 case takes 113 sec, ‘prefix_length’ = 3 case takes 132 sec
and ‘prefix_length’ = 4 case takes 150 sec.

180,

== prefix_length =1
—prefix_length =2
prefix_length =3

- - prefix_length = 4

Time taken (in sec)

690 2‘0

Fig. 4: PRE_MR performance for different prefix_length

values

50 60
File size (kB)

100

1 reducer node takes 100 sec, 2 reducers take 91 sec and 4
reducers take 88 sec.

TABLE III: PRE_MR performance for different number of
reducers, prefiz_length=1

[ File Size | 1 reducer | 2 reducers | 4 reducers |

10 kB 67 sec 65 sec 68 sec
20 kB 72 sec 68 sec 70 sec
30 kB 77 sec 69 sec 71 sec
40 kB 79 sec 75 sec 76 sec
50 kB 90 sec 86 sec 79 sec
60 kB 93 sec 95 sec 80 sec
70 kB 94 sec 90 sec 85 sec
80 kB 100 sec 91 sec 88 sec
90 kB 106 sec 96 sec 93 sec
100 kB 108 sec 112 sec 101 sec

Table IV and

Fig. 6 describe the times taken when the

TABLE II: PRE_MR performance for different pre fix_length

values

[ File Size | prefix_length=1 | prefix_length=2 | prefix_l

cd 3 [ preﬁx_’ a" 4 l

‘prefix_length’ parameter in PRE_MR is set to 2. For
example, for a file of size 90 kB, 1 reducer node takes 121
sec, 2 reducers take 117 sec, and 4 reducers take 102 sec.

TABLE IV: PRE_MR performance for different number of
reducers, prefiz_length=2

10 kB 67 sec 69 sec 65 sec 66 sec
20 kB 72 sec 72 sec 75 sec 78 sec
30 kB 77 sec 79 sec 82 sec 87 sec
40 kB 79 sec 82 sec 86 sec 96 sec
50 kB 90 sec 90 sec 102 sec 112 sec
60 kB 93 sec 105 sec 115 sec 120 sec
70 kB 94 sec 108 sec 116 sec 134 sec
80 kB 100 sec 113 sec 132 sec 150 sec
90 kB 106 sec 121 sec 158 sec 155 sec
100 kB 108 sec 131 sec 134 sec 166 sec

We also experimented with different number of reducers in

the PRE_MR implementation for three cases: ‘pre fiz_length’
=1, ‘prefixz_length’ = 2 and ‘prefiz_length’ = 3. In each
case, in the corresponding Fig., we take the file size as the
x-axis and the runtime for the experiment as the y-axis.

Table IIT and Fig. 5 detail the times taken for this exper-
iment when the ‘prefiz_length’ parameter is set to 1. We
see that the performance generally improves with increasing
number of reduce nodes. For example, for a file of size 80 kB,

[ File Size [ 1 reducer [ 2 reducers | 4 reducers |

10 kB 69 sec 63 sec 67 sec
20 kB 72 sec 66 sec 71 sec
30 kB 79 sec 72 sec 73 sec
40 kB 82 sec 76 sec 82 sec
50 kB 90 sec 81 sec 78 sec
60 kB 105 sec 91 sec 90 sec
70 kB 108 sec 98 sec 89 sec
80 kB 113 sec 97 sec 97 sec
90 kB 121 sec 117 sec 102 sec
100 kB 131 sec 111 sec 101 sec

Table V and Fig. 7 list the times taken for PRE_MR when
the ‘prefix_length’ parameter is set to 3. Again, increasing
the number of nodes in reduce phase tend to improve the
performance. For example, for a file of size 80 kB, 1 reducer
case takes 132 sec, 2 reducers take 124 sec and 4 reducers
take 108 sec.
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Fig. 6: PRE_MR performance for different number of reducers,
prefiz_length=2

TABLE V: PRE_MR performance for different number of
reducers, prefiz_length=3

[ File Size | 1 reducer | 2 reducers | 4 reducers |

10 kB 65 sec 67 sec 67 sec
20 kB 75 sec 73 sec 77 sec
30 kB 82 sec 77 sec 82 sec
40 kB 86 sec 84 sec 104 sec
50 kB 102 sec 94 sec 95 sec
60 kB 115 sec 93 sec 92 sec
70 kB 116 sec 99 sec 114 sec
80 kB 132 sec 124 sec 108 sec
90 kB 158 sec 127 sec 98 sec
100 kB 134 sec 115 sec 122 sec

—1 reducer
= =2 reducers|
4 reducers

Time taken (in sec)
E

90

80
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G(i L L L L L L L L
0 20 30 % 50 60 70 80 90 100
File size (kB)

Fig. 7: PRE_MR performance for different number of reducers,
prefiz_length=3

Table VI and Fig. 8 describe the times taken for different
number of mappers for PRE_MR with pre fix_length set to 1
and 4 reducers. In Fig. 8, the x-axis labels the size of the input
file, and the runtime for the experiment are on the y-axis. As
expected, with increase in the number of mapper nodes, the
performance tends to improve. For example, for a file of size
80 kB, 2 mappers take 88 sec, 4 mappers take 85 sec and 8
mappers take 82 sec.

TABLE VI: PRE_MR performance for different number of
mappers, prefiz_length=1, number of reducers=4

[ File Size | 2 mappers | 4 mappers [ 8 mappers |

10 kB 68 sec 67 sec 66 sec
20 kB 70 sec 67 sec 67 sec
30 kB 71 sec 69 sec 67 sec
40 kB 76 sec 75 sec 76 sec
50 kB 79 sec 73 sec 74 sec
60 kB 80 sec 84 sec 78 sec
70 kB 85 sec 84 sec 82 sec
80 kB 88 sec 85 sec 82 sec
90 kB 93 sec 91 sec 90 sec
100 kB 101 sec 101 sec 90 sec

We observe in the results for PRE_MR performance that
the running time does not always decrease when the number of
mappers or reducers increases. We believe that this is because
MapReduce resources are used to split the data and send it
across to different nodes, and the intermediate results need to
be shuffled across the network.

For the full text of Pride and Prejudice by Jane Austen,
performing PRE_MR with 2 mappers and 4 reducers and after
dividing the text into chunks of 100 kB took 684 seconds, when
the ‘prefiz_length’ parameter is set to 2. Using SIN_ED to
do this after dividing the text into chunks of 10 kB took 967
seconds. However, we note that when reducing the file chunk
size, the number of distinct string pairs, p reduce drastically,
as p is proportional to the square of the number of distinct
strings. So, we expect that the performance improvement using
PRE_MR is much more than what this result indicates.

We verified the reproducibility of the experiments by carry-
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Fig. 8: PRE_MR performance for different number of mappers

ing out each of the experiments multiple times, and taking the
average values. Besides, it was found that the results obtained
had little standard deviation. In some additional experiments,
for an increasing number of compute nodes, the improvement
in performance was found to be quite substantial as the file
size increased over 100 kB. For keeping the uniformity of the
results across all experiments, we haven’t presented the results
for file sizes more than 100 kB or for larger number of map
and reduce nodes, since we hadn’t evaluated these cases on all
experiments. The presented results are aimed to show trends
in performance change with varying file sizes and different
number of computation nodes.

VI. CONCLUSIONS AND FUTURE WORK

Although there are several efficient algorithms for cal-
culating edit distance and related problems, computing edit
distance for a large set of strings is expensive. We propose an
efficient parallel implementation for this, using MapReduce.
With support from our experimental results of Section IV,
we argue that our approach is much more efficient than the
usual dynamic programming method. We can also tune the
‘prefir_length’ parameter in PRE_MR, and the number of
nodes used in the map phase and reduce phase to improve the
performance of our algorithms for varying input file sizes.

As the number of mapper and reducer nodes are increased
in MapReduce, there is greater parallelization and the number
of processes increase. In Table I, PRE_MR is three times faster
than the sequential procedure because it uses 4 reducers instead
of 1. The speedup is not substantial when doubling the mappers
and reducers because as mentioned previously, MapReduce
resources are used to split the data and send it to these nodes,
and the intermediate results are shuffled across the network.
However, we expect this to get more than compensated for
with larger files, where each prefix pair would be expected to
have a larger number of corresponding string pairs, and thus
each reduce process initiated would produce more results.

The optimal number of mappers, reducers and the
‘prefir_length’ parameter value vary with the file size and
file content. It is hoped that the results on varied experiments

presented can help guide towards a good initial guess for these
parameters.

The field of dynamic programming problems is far from
exhausted when it concerns creating scalable, effective, parallel
algorithms. We argue, however, that our algorithms are a step
in the right direction. Future research includes further testing to
explore their efficiency in different datasets. In addition, further
analysis of dynamic programming algorithms can lead to more
effective MapReduce solutions, especially for problems that
require ad-hoc data analysis.
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